Comparative Outcomes of 80 Femoral Neck Fractures in Young Adult Patients with Ipsilateral Neck-Shaft Fractures Treated at 26 North American Trauma Centers

Griffin R Rechter¹, Cory Alan Collinge, Andrea Finlay, Michael John Beltran², Andres Felipe Rodriguez-Buitrago, Phillip Mitchell, Hassan Riaz Mir³, Michael J Gardner⁴, Michael T Archdeacon⁵, Paul Tornetta⁶, Guadalupe De La Fuente, Henry Claude Sagi⁷, Adam Schumaier, David O'Neill, Payton Harris, Nathan P Olszewski⁸, Benjamin David Streufert, Stephen A Sems⁹, William G Rainer¹⁰, Brandon J Yuan⁹, Kyle James Jeray¹¹, Stefano Cardin¹², Stephanie Lewis Tanner¹³, Frank Avilucea¹², John P Ketz, John Alan Scolaro¹⁴, Brett D Crist¹⁵, Kevin Horner, Patrick F Bergin, Clay A Spitler, Jaimo Ahn¹⁶, Joshua Bram, Joseph R Hsu, Joseph Buck¹⁷, Andrew H Schmidt¹⁸, Nirmal C Tejwani¹⁹, Devan Mehta, Walter W Virkus, Timothy G Weber, Brian Mullis, Frank A Liporace, Donald Adams, Daniel Scott Horwitz²⁰, Eyal Yaacobi, Robert A Hymes, Kelly G Kilcoyne, Lisa K Cannada, Daniel T Miles, George Franklin Lebus²¹, David Antonio Bustillo, Alex Jewell Lancaster¹⁷, Justin Michael Harrington, Tyler Rohinton Morris²², Shelley Macdonald²³, Kelly Trask, Chad Coles, Jesse Patton Robinette²⁴, Jerald Westberg²⁵

¹Texas Christian University School of Medicine, ²University of Cincinnati, ³University of South Florida, ⁴Stanford University Sugery, ⁵UC Dept of Orthopaedics, ⁶Boston University, ⁷UC Health, ⁸Boston University Orthopaedics, ⁹Mayo Clinic, ¹⁰Dartmouth-Hitchcock Medical Center, ¹¹Prisma Health, ¹²Orlando Health, ¹³Prisma Health - Upstate, ¹⁴University of California, Irvine - Orthopaedics, ¹⁵Univ of Missouri School of Med, ¹⁶Univ of Michigan Orthopaedic Surgery, ¹⁷University of Utah, ¹⁸HCMC Dept of Orthopedic Surgery, ¹⁹NYU LANGONE HEALTH, ²⁰Geisinger Health System, ²¹Texas Orthopaedic Associates, ²²Bone and Joint Group, ²³Capital District Health Authority, ²⁴Duke University Health System, ²⁵Hennepin County Medical Center

INTRODUCTION:

Ipsilateral fractures of the femoral neck and shaft (neck-shaft fractures) are relatively uncommon injuries requiring complex treatments and are presumed to carry high risks for poor outcomes. Most studies involving femoral neck-shaft fractures have evaluated the shaft injury or the incidence of missed femoral neck fractures. The purpose of this multicenter study was to analyze patients, their injuries, operative treatments, and outcomes relating to the femoral neck in young adults who sustained ipsilateral femoral neck-shaft fractures.

METHODS:

A retrospective analysis of 26 North American Level 1 Trauma Centers was performed on 492 femoral neck fractures in skeletally mature patients <50 years of age. Patients with neck-shaft fractures (Group 1) and isolated femoral neck fractures (Group 2) were separated into comparative cohorts for analysis. Patient, injury, and treatment factors were recorded and compared. The main outcome measure was treatment failure, encompassing failed fixation/nonunion, osteonecrosis, malunion (\geq 15 mm of shortening), and the need for major revision surgery. Comparative statistical analysis was performed, and significance was set at P < 0.05.

RESULTS:

There were 80 patients in Group 1 and 412 patients in Group 2; these groups had several notable differences. Compared to Group 2, Group 1 patients were younger, had a greater BMI, and had a lower incidence of end-stage renal disease. Additionally, the femoral neck fractures in Group 1 were more frequently displaced, vertically oriented, reduced open, had a good-excellent femoral neck fracture reduction, and were treated with a fixed-angle device (P < 0.05 for all). Overall, 20% of Group 1 fractures experienced treatment failure compared to 48% of Group 2 patients (P < 0.001). In contrast to Group 2, Group 1 patients sustained fewer failures by failed fixation/non-union (8% vs. 26%, P < 0.001) and malunion (1% vs. 8%, P = 0.03). Group 1 experienced less femoral neck shortening (5.7 mm vs. 2.0 mm, P < 0.001). However, osteonecrosis and the need for major reconstructive surgery did not exhibit a significant difference between groups. Group 1 patients were associated with a decreased risk of major failure (OR = 0.27, 95% CI = 0.15 - 0.48) and nonunion (OR = 0.24, 95% CI = 0.10 - 0.57). Additionally, Group 1 patients with fair-poor femoral neck fracture reduction were associated with an increased risk for treatment failure (OR = 19.3). No relationship was found between treatment failure and the use of a one- or two-device fixation construct to address contiguous ipsilateral fractures.

DISCUSSION AND CONCLUSION:

Outcomes of femoral neck fractures in combination with femoral shaft fractures (Group 1) were associated with a better prognosis than isolated femoral neck fractures (Group 2) in young adult patients. The patients, injuries, and treatments of neck-shaft fractures were different from those with isolated femoral neck fractures. These substantial differences may explain enhanced outcomes for this injury pattern compared to isolated femoral neck fractures in young adults.

	Isolated Femoral Neck Fracture	Ipsilateral Neck- Shaft Fracture	Total Cohort	P-value
Number of patients, n (%)	412 (83.7)	80 (16.2)	492 (100)	N/A
Female gender, n (%)	140 (34.0)	33 (41.3)	173 (35.2)	0.213
Mean age (y) ± SD	37.54 ± 8.69	33.34 ± 8.56	36.86 ± 8.80	<0.001
Mean body mass index (BMI) ± SD	26.59 ± 6.43	29.74 ± 8.50	27.13 ± 6.92	< 0.001
Any bone disease, n (%)	205 (49.8)	31 (39.2)	236 (48.1)	0.087
Smoking	136 (33.0)	29 (37.2)	165 (33.8)	0.493
Diabetes	23 (5.6)	2 (2.5)	25 (5.1)	0.260
Steroids	20 (4.8)	1 (1.3)	21 (4.3)	0.150
Alcohol dependence	45 (10.9)	5 (6.3)	50 (10.2)	0.218
End stage renal disease	24 (5.8)	0 (0.0)	24 (4.9)	0.028
Displaced neck-fractures, n (%)	301 (73.0)	76 (95.0)	377 (76.5)	< 0.001
Mean modified Pauwels angle (degrees) ± SD	51.39 ± 10.83	60.38 ± 10.58	53.19 ± 11.35	< 0.001
Pauwels classification, n (%)				
Type I (< 30°)	6 (2.0)	0 (0.0)	6 (1.6)	0.731
Type II (30°- 50°)	113 (38.3)	9 (11.8)	122 (32.9)	< 0.001
Type III (> 50")	176 (59.7)	67 (88.2)	243 (65.5)	<0.001
Reduction method, n (%)				< 0.001
Closed	223 (54.0)	21 (26.3)	244 (49.5)	< 0.001
Open	190 (46.0)	59 (73.8)	249 (50.5)	<0.001
Reduction quality , n (%)				
Excellent	117 (28.7)	51 (64.6)	168 (34.6)	< 0.001
Good	146 (35.9)	19 (24.1)	165 (34.0)	0.039
Fair	28 (6.9)	3 (3.8)	31 (6.4)	0.430
Poor	8 (2.0)	2 (2.5)	10 (2.1)	0.490
Construct type, n (%)				
Fixed angle device	159 (38.5)	47 (58.8)	206 (41.8)	< 0.001
Sliding hip screw	138 (33.4)	41 (51.2)	179 (36.3)	0.002
Cephalomedullary nail	21 (84.0)	7 (8.8)	28 (26.7)	<0.001
Multiple cannulated screws	253 (61.3)	32 (42.0)	285 (57.8)	< 0.001

Outcomes	Isolated Femoral Neck Fracture	Ipsilateral Neck- Shaft Fracture	Total Cohort	P-value
Number of Patients, n (%)	412 (83.8)	80 (16.2)	492	N/A
Major Failure, n (%)	199 (48.2)	16 (20.0)	215 (43.6)	<0.001
Non-Union, n (%)	106 (26.2)	6 (7.9)	112 (23.3)	<0.001
Osteonecrosis, n (%)	51 (24.1)	3 (16.7)	54 (23.5)	0.478
Malunion ≥15mm, n (%)	26 (8.1)	1 (1.3)	27 (6.80)	0.034
Major Revision Surgery, n (%)	137 (71.0)	12 (70.6)	149 (71.0)	0.972
Mean Maximum Shortening of Femoral Neck (mm) ± SD	5.72 ± 4.5	2.01 ± 4.0	4.87 ± 4.7	<0.001