Jian J. Lin^{1}, Mark J. Lowe^{1}, Robert J. Fox^{2}, and Ken Sakaie^{1}

Deciding from among the many available tractography algorithms can be challenging. We demonstrate that track-based measures can be compared using standard statistical approaches to compare the performance of two probablistic tractography algoirthms to determine the conditions under which one algorithm can replace another.

1. Lowe, M. J., Beall, E. B., Sakaie, K. E., Koenig, K. A., Stone, L., Marrie, R. A. & Phillips, M. D. Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 2008; 29(7):818-827.

2. Zhang, M., Sakaie, K. E. & Jones, S. E. Logical foundations and fast implementation of probabilistic tractography. IEEE Trans Med Imaging 2013; 32(8):1397-1410.

3. Pierpaoli, C., Walker, L., Irfanoglu, M. O., Barnett, A., Basser, P., Chang, L.-C., Koay, C., Pajevic, S., Rohde, G., Sarlls, J. & Wu, M. in Proceedings 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine. 1597.

4. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111(3):209-219.

5. Tournier, J. D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 2004; 23(3):1176-1185.

6. Sakaie, K. E. & Lowe, M. J. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI. Neuroimage 2007; 34(1):169-176.

7. Marenco, S., Rawlings, R., Rohde, G. K., Barnett, A. S., Honea, R. A., Pierpaoli, C. & Weinberger, D. R. Regional distribution of measurement error in diffusion tensor imaging. Psychiatry Res 2006; 147(1):69-78.

Figure 1. Track density maps from A) Monte Carlo (MC) and B)
PDE tractography

Figure 2. Correlation of track-based measures in
corticospinal tract (CST) from Monte Carlo (MC) and PDE tractography. Pearson
correlation (R^{2}) is shown for each comparison.

Figure 3. Correlation of track-based measures in
Transcallosal Motor Pathway (TMP) from Monte Carlo (MC) and PDE tractography. Pearson
correlation (R^{2}) is shown for each comparison.

Figure 4. Measures of reproducibility (intra-class
correlation coefficient (ICC) and coefficient of variation (CV)) for each
track-based measure, white matter pathway and algorithm. Values of ICC >
0.70 and CV < 10 indicate high reproducibility^{7}.