Radiographic and Clinical Outcomes of Distal Radius Fractures Treated with Volar Locking **Plates versus Fragment-Specific Plating Constructs**

Richard A Pizzo, Ian S Hong, Alex Tang, Richard S Yoon¹, Frank A Liporace, Nicole Montero-Lopez, John T Capo ¹Jersey City Medical Center - RWJBarnabas Health

INTRODUCTION: Trends toward surgical fixation for distal radius fractures continue to increase. Advancements in orthopedic implants have resulted in a variety of plating options, including plates designed for specific fracture fragments. Indications for these constructs over conventional volar locking plates (VLP) remains largely subjective. The purpose of this study was to compare the outcomes of distal radius fractures treated with VLP alone versus Fragment Specific Fixation (FSF) constructs. We examined the ability of both techniques for restoration and maintenance of radiographic parameters and resulting clinical outcomes.

METHODS: A retrospective review was conducted of all consecutive distal radius fractures treated between 2017 and 2019. Inclusion criteria were skeletally mature patients who were treated with open reduction internal fixation and with minimum 6 month clinical and radiographic follow-up. Primary outcome measures included radiographic evaluations and functional outcomes including active range of the wrist and forearm, grip strength, and composite finger motion. Radiographic evaluations included radial height and inclination, volar tilt, and amount of intra-articular step-off evaluated on pre-operative, immediately post-operative, and at most recent clinical follow-up.

RESULTS: A total of 54 patients were eligible for inclusion and evaluated. Twenty-six patients were treated with VLP and 28 with FSF. There were no statistically significant differences in mean age (56.8 vs 48.6 years, p=0.982), gender (%female: 65% vs 46%, p=0.161) or involvement of dominant limb: 42% vs 46%, p=0.571). However, significant differences (p=0.016) were observed in the distribution of AO fracture patterns: type A fractures were more common in the VLP group (27% vs 4%), type B were more common in the FSF group (12% vs 36%), whereas type C were similar (62% vs 60%). There were no differences observed in any radiographic parameters at pre-operative, immediately postoperative or at final follow-up between the two groups. There was no radiographic subsidence or loss of reduction for either construct. Both constructs adequately maintained reduction. FSF trended towards higher complications with regard to tendinopathy (p=0.062) and significantly higher reoperations than VLP (p=0.027), however this group also contained more complex fractures. No differences between groups were observed in clinical or functional outcome measures.

DISCUSSION AND CONCLUSION: There were no significant differences in clinical outcomes or the ability of either construct to achieve and maintain adequate radiographic outcome parameters. FSF was shown to have higher risks of complication and reoperation, namely removal of instrumentation for persistent pain or tendon dysfunction. However, this finding may be due to more complex fracture patterns seen in the FSF group. As such, further study is warranted.

Table: Radiographic Outcomes by Fracture Pattern	a

	Fracture	type A	
	VLP (n=7)	FSF (n=1)	p-value
Radial height (mm)			
Pre-op	8.1	11.0	0.382
Immediate Post-op	12.1	14.0	0.174
Final follow-up	11.5	15.0	0.143
Radial inclination (deg)			
Pre-op	17.0	17.9	0.912
Immediate Post-op	19.9	29.4	0.127
Final follow-up	22.8	29.8	0.280
Volar tilt (deg)			
Pre-op	-15.8	-12.2	0.907
Immediate Post-op	6.6	9.9	0.513
Final follow-up	9.9	4.6	0.501
	Fracture	type B	
	VLP (n=3)	FSF (n=10)	p-value
Radial height (mm)			
Pre-op	11.7	7.5	0.185
Immediate Post-op	12.7	13.1	0.599
Final follow-up	12.7	12.5	0.928
Radial inclination (deg)			
Pre-op	15.0	16.1	0.424
Immediate Post-op	21.9	24.2	0.237
Final follow-up	25.4	24.3	0.722
Volar tilt (deg)			
Pre-op	25.5	17.3	0.071
Immediate Post-op	14.1	-0.8	0.043
Final follow-up	16.1	5.2	0.046
	Fracture	type C	
	VLP (n=16)	FSF (n=17)	p-value
Radial height (mm)			
Pre-op	8.0	7.8	0.895
Immediate Post-op	12.0	12.4	0.986
Final follow-up	11.2	11.9	0.291
Radial inclination (deg)			
Pre-op	16.0	14.3	0.484
Immediate Post-op	22.9	22.1	0.652
Final follow-up	23.0	23.0	0.987
Volar tilt (deg)			
Pre-op	-9.6	-10.5	0.912
Immediate Post-op	4.5	4.6	0.914
Final follow-up	6.8	5.7	0.752

Functional Outcomes	VLP (n=23)		FSI	FSF (n=21)	
	n	%	n	%	
Return to full activity	20	87.0	18	85.7	0.711
Full grip strength	18	78.3	17	81.0	0.500
Full composite finger flexion	19	82.6	19	90.4	0.697
(Missing information for 2					
VLP patients)					
Sub	-Analysis	by Limb D	ominance		
Dominant hand					
Return to full activity	7	87.5	7	77.8	0.624
Full grip strength	8	100	8	88.9	1.000
Full composite finger	8	100	9	100	1.000
flexion					
Non-Dominant hand					
Return to full activity	13	86.7	11	91.7	0.238
Full grip strength	10	66.7	9	75.0	0.419
Full composite finger	11	73.3	10	83.3	0.420
flexion					
	lysis by Ba	seline Fun	ctioning S	tatus	_
Active					
Return to full activity	11	78.6	9	81.8	0.916
Full grip strength	10	71.4	9	81.8	0.424
Full composite finger flexion	11	78.6	10	90.9	0.425
Laborer					
Return to full activity	-	-	3	100	-
Full grip strength	-	-	2	66.7	-
Full composite finger	-	-	2	66.7	-
flexion					
Low demand					1
Return to full activity	9	100	6	85.7	0.438
Full grip strength	8	88.9	6	85.7	1.000
Full composite finger flexion	8	88.9	7	100	1.000

	VLP (n=26)	FSF (n=28)	p-value
Total complications, n	10	17	
Tendinopathy	1 (4%)	6 (21%)	0.062
Persistent pain	3 (12%)	3 (11%)	0.629
Paresthesia	5 (19%)	6 (21%)	0.555
Screw perforation	1 (4%)	0 (0%)	0.481
Malunion	0 (0%)	2 (4%)	0.264
Total reoperations, n	2 (8%)	9 (32%)	0.027
Removal of hardware	1 (4%)	7 (25%)	0.033
Carpal Tunnel Release	1 (4%)	3 (11%)	0.334
Tenolysis	0 (0%)	5 (18%)	0.031
Neurolysis	0 (0%)	1 (3.6%)	0.519
Sub-	Analysis by Radiogr	aphic >12 months	
Posttraumatic OA	VLP (n=16)	FSF (n=10)	0.138
No	16 (100%)	8 (80%)	
Yes	0 (0%)	2 (20%	
Follow-up (months)	39.7 ± 25.8	35.8 ± 20.3	0.692