Hip Arthroscopy Patients from Neighborhoods with Greater Socioeconomic Disadvantage Experience Worse Healthcare Accessibility and Inferior Long-Term Functional Outcomes: Minimum 8-Year Follow-up

Jonathan Lee, Stephen Gillinov, Bilal Sohail Siddiq, Kieran Dowley, Rohit Reddy Rachala¹, Nathan J Cherian, Jeffrey Mun, Srish Sritacharan Chenna¹, Scott David Martin

¹Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA

INTRODUCTION:

A growing area of interest in orthopaedic surgery is the relationship between social determinants of health (SDOH) and post-operative outcomes. Past population health investigations support that neighborhood-level disparities may portend average life expectancies that differ by 20 to 30 years in adjacent communities, leading health equity researchers to suggest that a patient's ZIP code may matter more than their genetic code. In efforts to better quantify a patient's health risk and optimize post-operative recovery, past literature has encouraged the use of the Area Deprivation Index (ADI), a validated tool that calculates neighborhood-level socioeconomic disadvantage. As such, the ADI may help identify neighborhoods that lack resources (e.g. medical services, recreational facilities, or grocery stores) that play a key role in improving overall health and post-operative recovery. This deeper understanding can inspire equitable clinical guidelines along with health policies that mitigate the disparities that disadvantaged patients face. The purpose of the present study was to investigate the effects of neighborhood-level socioeconomic disadvantage on healthcare accessibility and long-term functional outcomes for patients undergoing hip arthroscopy.

METHODS: This retrospective study queried patients with minimum 8-year follow-up who underwent hip arthroscopy for the treatment of symptomatic labral tears secondary to FAI. Included patients were ≥18 years old, underwent primary hip arthroscopy for symptomatic labral tears, had complete patient-reported outcome measures (PROMs) at minimum 8-year follow-up, and resided in the United States. The ADI scores of all included patients were normalized to a relative mean percentile of 50%, and the study population was stratified into quartiles: (Q1) 1-25th, (Q2) 26-50th, (Q3) 51-75th, and (Q4) 75-100th percentiles. Patients in Q1 and Q4 represented the ADI_{Low} (least disadvantaged) and ADI_{High} (most disadvantaged) cohorts, respectively. Patients in Q2 and Q3 were excluded from further analyses. The primary outcomes were the modified Harris Hip Score (mHHS), Nonarthritic Hip Score (NAHS), Hip Outcome Score (HOS)–Activities of Daily Living (HOS-ADL), HOS–Sports Specific subscale (HOS-SSS), and 33-item International Hip Outcome Tool (iHOT-33). Secondary outcomes included long-term survivorship measured by conversion to total hip arthroplasty (THA), revision hip arthroscopy, pain levels, rates of achieving the patient acceptable symptom state (PASS) for PROMs, and patient satisfaction.

RESULTS: There was a total of 43 patients in both the ADI_{Low} and ADI_{High} cohorts. The only difference in baseline demographics between ADI cohorts was patient sex, with fewer females in the ADI_{Low} group (41.9% vs 67.4% female; P=0.017) (Table 1). ADI_{High} patients experienced significantly worse healthcare accessibility (Table 2). When comparing minimum 8-year post-operative PROM scores, ADI_{Low} patients reported significantly higher scores for all PROMs except for HOS-SSS (77.9±24.7 vs 72.6±28.9; P=0.371). Both cohorts underwent similarly low rates of revision hip arthroscopy rate (ADI_{High}: 3 [7.0%] vs. ADI_{Low}: 2 [3.7%]; P=0.645). Despite ADI_{High} having significantly worse PROMs, both cohorts converted to THA at a statistically similar rate (ADI_{High}: 5 [11.6%] vs. ADI_{Low}: 9 [20.9%]; P=0.243). By logistic regression, ADI_{High} patients had a significantly reduced odds of achieving PASS for mHHS (ADI_{High} vs. ADI_{Low}, OR: 0.09; 95% CI, 0.01-0.51; P=0.007) and HOS-ADL (ADI_{High} vs. ADI_{Low}, OR: 0.10; 95% CI, 0.01-0.66; P=0.018) (Table 4).

DISCUSSION AND CONCLUSION: In the present study, ADI_{High} patients were nearly 11.4 and 10.4 times less likely to achieve 10-year PASS for mHHS and HOS-ADL, respectively. A significantly greater proportion of ADI_{High} patients resided in rural communities, primary care HPSAs, MUA/Ps, and counties with a greater rural population. At a patient level, the ADI_{High} cohort had lower levels of insurance coverage, education, and household income. This investigation established that hip arthroscopy patients from neighborhoods with greater socioeconomic disadvantage experience worse healthcare accessibility and inferior long-term functional outcomes. While it is important that orthopaedic surgeons understand the consequential effects of SDOH on long-term musculoskeletal health, these findings have far greater implications. Orthopaedic surgeons nationwide must collaborate with patients, hospital systems, and local/state governments to reform healthcare policies that have contributed to these disparities.

	ADI _{Les} (n=43)	ADI _{Bgh} (n=43)	P-value
Area Deprivation Index (ADI)	4.0 ± 2.1	37.7 ± 12.1	<0.401
Length of follow-up, years	10.9 ± 2.4	11.3 ± 2.6	0.470
Age, y	39.9 ± 12.5	36.0 ± 10.6	0.123
BMI, kg/m ²	25.1 ± 3.5	26.1 ± 3.9	0.214
Sex, n (%)			0.017
Male	25 (58.1%)	14 (32.6%)	
Female	18 (41.9%)	29 (67.4%)	
Labral treatment, n (%)			0.514
Repair	20 (46.5%)	17 (39.5%)	
Debridement	23 (53.5%)	26 (60.5%)	
Chondral treatment, n (%)			0.366
Microfracture	5 (11.6%)	8 (18.6%)	
None	38 (88.4%)	35 (81.4%)	
LCEa, degrees	35.9 ± 7.0	35.2 ± 6.0	0.633
Alpha angle, degrees	57.8 ± 17.9	53.9 ± 18.8	0.336
Tennis Grade, n (%)			0.802
0	32 (74.4%)	33 (76.7%)	
1	11 (25.6%)	10 (23.3%)	
Laterality, n (%)			0.829
Left	20 (53.5%)	19 (44.2%)	
Right	23 (46.5%)	24 (55.8%)	

	ADI:101(8=43)	ADIma (8~43)	P-value
Area Deprivation Index (ADI)	4.0 ± 2.1	37.7 ± 12.1	<0.001
Raral-Urban Commuting Area (RUCA), n (%)			0.023
Metropolitan area: core	42 (97.7%)	32 (74.4%)	
Metropolitan area: high commuting	0 (0%)	3 (7.0%)	
Micropolitan	0 (0%)	4 (9,3%)	
Small town	1 (2.3%)	1 (2.3%)	
Raral area	0 (0%)	3 (7.0%)	
Baral, n (%)			0.026
Yes	1 (2.3%)	7 (16.3%)	
No	42 (96.7%)	36 (83.7%)	
Primary Care Health Professional Shortage Area (HPSA), n (%)			0.024
Yes	2 (4.6%)	9 (20.9%)	
No	41 (95.4%)	34 (79.1%)	
Medically Underserved Area/Presulation (MUA/P), n (%)			0.019
Yes	3 (7.0%)	11 (25.6%)	
No	40 (93.0%)	32 (74.4%)	
County-Invel Rumlity, %	3.8 ± 4.0	22.2 ± 22.5	<0.001
Insurance, n (%)			0.035
Private	35 (81.4%)	24 (55.8%)	
Medicare, Medicaid, or MassHealth	3 (7.0%)	9 (20.9%)	
Unknown/Prefer not to Answer	5 (11.4%)	10 (23.3%)	
Education, n (%)			0.002
> Graduate deurce	27 (62.8%)	10 (23.3%)	
College degree	12 (27.9%)	19 (44.2%)	
High School diploma	4 (9.3%)	12 (27.9%)	
Unknown/Prefer not to Answer	0 (0%)	2 (4.7%)	
Family Income, n (%)			0.002
≥ \$259,000	12 (27.9%)	0 (0%)	
\$150,000 - \$249,999	7 (16.3%)	5 (11.6%)	
\$100,000 - \$149,999	10 (23.3%)	9 (20.9%)	
\$50,000 - \$99,999	6 (13.9%)	12 (27.9%)	
< \$50,000	8 (18.6%)	14 (32.6%)	
Unknown/Prefer net to Answer	0 (0%)	3 (7.0%)	

	ADI _{Les} (n=43)	ADImah (n=43)	P-value
PROMs			
mHHS	90.1 ± 13.9	79.3 ± 14.6	0.038
NAHS	87.5 ± 15.3	80.7 ± 14.9	0.043
HOS-ADL	91.6 ± 11.8	84.7 ± 14.8	0.020
HOS-SSS	77.9 ± 24.7	72.6 ± 28.9	0.371
iHOT-33	78.2 ± 24.2	66.8 ± 26.0	0.041
Revision Hip Arthroscopy			
Revision Hip Arthroscopy, n (%)	2 (4.7%)	3 (7.0%)	0.645
Time to Revision, years	5.5 ± 3.6	7.0 ± 5.4	0.759
Age at Revision, years	40.0 ± 12.5	36.1 ± 10.6	0.126
Conversion to THA			
Conversion to THA, n (%)	9 (20.9%)	5 (11.6%)	0.243
Time to THA, years	4.1 ± 5.3	8.5 ± 4.2	0.137
Age at conversion to THA, years	55.8±7.2	57.6 ± 6.9	0.655
Data are reported as mean it standard deviat	ion or No. of patients	(%). Boldface denote	statistical
Observiations: ADI, Area Deprivation Index	mHHS, modified He	rris Hip Score; NAHS	, Nenarthr
Extremity Functional Scale; HOS-ADL, Hip	Outcome Score-Activ	ities of Daily Living;	105-555,
weife Subscale: i807-33, 33-item Interna	tional His Outcome T	ool: THA, total his at	threelasty.

