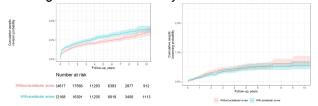
No Difference in Survivorship Between THA With- and Without- Acetabular Screws for Uncomplicated THA using Ultra-Porous Acetabular Cups and Crosslinked Polyethylene in a Large US Healthcare System


Foster Chen¹, Priscilla Hannah Chan², Heather Ann Prentice³, Liz Paxton³, Brian H Fasig⁴, Dhiren S Sheth ¹Washington Permanente Medical Group, ²Kaiser, ³Kaiser Permanente, ⁴Kaiser Permanente National Implant Registries INTRODUCTION: Modern cementless acetabular cups for primary total hip arthroplasty (THA) typically have screw options. Historically, screws were thought to improve stability, but came at the cost of pathways for polyethylene wear particle egress and osteolysis. Modern implants made with ultra-porous cups and wear-resistant liners may have made both respective concerns obsolete. Therefore, the utility and benefit of screws in modern uncomplicated THA is contested, and an examination was undertaken to determine implant survivorship respective to screw use specifically in scenarios of current cups and liners.

METHODS: We conducted a cohort study. A U.S. healthcare system's arthroplasty registry was used to identify patients ≥18 years who underwent THA for osteoarthritis (2010-2021) with a current or recent generation ultra-porous cup and cross-linked polyethylene liner, either with- or without- 1-2 acetabular screws. We excluded scenarios suggestive of complexity, such as with noted intraoperative complications, constrained or dual-mobility liners, protrusio, structural bone grafting, diagnoses of dysplasia, posttraumatic or inflammatory arthritis, avascular necrosis, or cases with ≥3 screws. The primary outcome was aseptic revision for any reason, and secondary outcomes were revision for aseptic loosening and periprosthetic fracture specifically. Covariates included demographics, head size and acetabular cup sizes. Additional subgroup analysis was conducted according to surgical approach. Multiple Cox proportional hazard regression was used to evaluate adjusted risk. An instrumented variable analysis (IVA) was also performed using operating surgeon tendencies to use or avoid screws routinely (<25% vs. >75% of cases with screws) as the instrumental variable.

RESULTS: 46,785 THA were identified. Screw use declined from 65.3% to 49.9% over the study period. In adjusted analyses, there was no difference in 10-year aseptic revision risk, (3.1% vs. 2.8%, hazard ratio [HR] 1.00, 95% confidence interval [CI]=0.81-1.24, p=0.976), risk for revision for aseptic loosening (HR=1.06, 95% CI=0.76-1.49, p=0.731), or periprosthetic fracture (HR=1.04, 95% CI=0.77-1.42, p=0.786). In subgroup analysis according to approach, there was a higher risk of periprosthetic femur fracture in those undergoing THA with screws from an anterolateral approach (HR 3.81, 95% CI=1.56-9.31, p=0.003). However, there was no difference in aseptic revision risk in IVA between surgeons with a preference for or against screws (HR 0.88, 95% CI=0.71-1.10, p=0.277).

DISCUSSION AND CONCLUSION:

In this cohort study of survivorship following routine THA with modern ultra-porous cups and crosslinked polyethylene liners, our current usage patterns with acetabular screws are associated with neither an advantage nor disadvantage for either strategy – neither screw usage nor avoidance was associated with differences in aseptic loosening or revision risks. This is illustrated across the analyses, including among surgical approaches and when controlled against the tendencies of the operator to use a screw. While their contributions and detriments were rightfully debated in the past, both are likely outweighed by advancements in modern implants.

Overve	With screwa	Without screws	Adjusted* HF DSN CB	٠,
All conort (N=45,785)				
Appetic revision	471.(3.1)	405 (2.8)	1.00 (C.81-1.34)	0.57
Arentic loneoning	90 (D.b)	\$710.7	1.96 (0.76 1.49)	0.73
Fer prosthetic fracture	134(0.9)	104 (9.7)	104 (077-1/42)	0.78
Arterolateral SV-3,695/				
Asegoic revision	37 (2.4)	25 (1.4)	1.99 (1.75-5.26)	0.194
Aseptic loosening	10 (0.8)	3 (0.4)	2.01 (0.52-7.75)	0.800
Periprosthetic fracture	11 (0.6)	4 (D.3)	3.81 (1.56-9.31)	0.000
Direct anterior (N=17,864)				
Assetic revision	51 (2.0)	163 (1.7)	1.24 (0.86-1.79)	0.243
Assetic loosening	13 (0.6)	66 (0.7)	0.91 (0.43-1.92)	0.81
Periprosthetic fracture	17 (0.5)	44 (0.5)	1.43 (0.84-2.45)	0.185
Posterior (N=23.598)				
Aseptic revision	372 (3.4)	213 (4.3)	0.88 (0.69-1.13)	0.32
Asegtic loosening	54 (0.5)	26 (0.6)	1.08 (0.67-1.75)	0.758
Peripresthetic fracture	105 (1.0)	57 (1.2)	0.88 (0.63-1.26)	0.433

Outcom	Routinely use	Housinely to	Adjusted ² TOR (95% CT)	r
All ealory ele =12,516)				
Asoptic povision	22h (3.1)	143 (3.2)	2.52 (0.71 t.10)	0.27
Awyte 'onceasg Periprostlatic fracture	90 (0.41) 69 (0.79)	25 (8.65) 37 (8.86)	R 89 (0.50-1.50)	0.600
Antenhanna (N=1.212)	61(611)	7. [2.00]		0.01
Ascetic revision	19 (3.1)	3 (1.1)	2.13 (0.62-7.39)	0.232
Ascrtic looscring	4 (0, 23)	1(0.44)	1.00 (0.11-8.94)	0.99
Peripresthetic fracture	7 (0.80)	9	-	
Direct anterior (N=3.546)				
Ascetic revision	10.85	38 (1.8)	0.78 (0.56-1.69)	0.534
Ascetic loosening	1.00.5271	15 (0.89)	0.25 (0.03-1.88)	0.178
Peripresthetic fracture	5 (0.597)	10 (0.38)	1.62 (0.55-4.79)	0.382
Posterior (N=12,718)				
Asoptic revision	199 (3.1)	102 (4.1)	0.88 (0.69-1.11)	0.283
Asoptic loosening	25 (0.37)	9 (0.52)	1.27 (0.59-2.73)	0.534
Peripresthetic fracture	57 (0.79)	27 (1.19)	0.97 (0.61-1.53)	0.880