The Effect of Lumbar Decompression on Patients' Disability Measured by Spine Specific Wearables

Ram Haddas, Clarke Cady-Mccrea¹, Paul T Rubery, Ashley Rogerson, Varun Puvanesarajah¹

¹University of Rochester

INTRODUCTION:

Lumbar decompression for radiculopathy secondary to nerve root compression is a common procedure, leading to improvement in function in the appropriately selected patient. Continuous, remote objective measurement of patients function offers a novel approach for characterizing disability and surgical outcomes. We describe and validate a spine-specific wearable system to capture trunk kinematics, spatiotemporal parameters, and type of activity in the post-operative patient. Therefore, the purpose of this study was to assess the effect of lumbar decompression and fusion on patient's disability utilizing spine specific wearables.

METHODS:

A prospective, single-center, concurrent cohort study. Twenty-two Lumbar Degenerative surgical candidates underwent lumbar spine decompression with fusion. A week before (Pre) and 3 month following surgery (Post3), spine specific wearables were attached to patient's base of neck and passively recorded disability and functional outcomes for 3 days. At the end of each day, ODI and PROMIS were answered by patients. Outcome Measures included trunk Range of Motion (RoM), amount and type of physical activities, ODI, and PROMIS. Repeated-measurements ANOVA was used to compare outcomes before and after surgery using SPSS (IBM 2023).

RESULTS: Disability and function were improved following lumbar decompression and fusion as sited by spine-specific wearables and PROMIS. The volume of activities was significantly increased following surgery (% of the day; walking Pre: 16.0 ± 9.1 vs Post3: 24 ± 8.7 , p<0.05;). Moreover, trunk RoM was increased (Sagittal: Pre: 30.4 ± 11.3 vs Post3: $45.2\pm15.6^{\circ}$, p<0.05, Coronal: Pre: 30.0 ± 12.9 vs Post3: $45.4\pm12.9^{\circ}$, p<0.05). Furthermore, PROMIS and ODI scores were significantly improved (PROMIS Physical Function: Pre: 71.1 ± 9.7 vs Post3: 58.5 ± 12.4 , p<0.05; PROMIS Pain Interference: Pre: 69.4 ± 11.4 vs Post3: 56.7 ± 10.1 , p<0.05; PROMIS Mood: Pre: 65.9 ± 4.0 vs Post3: 60.1 ± 7.7 , p<0.05; ODI: Pre: 45.9 ± 12.7 vs Post3: 32.3 ± 11.7 , p<0.05;). Although, DFOMs were improved in LD patients, they were still significant different form an age and gender matched controls (p>0.05). LD patients presented with lower free-living physical function along with reduced trunk kinematics (walking: $4.7\pm2.1\%$, standing: $11.6\pm3.6\%$, sitting: $25.3\pm12.8\%$, and laying down: $41.7\pm12.2\%$ of the day, trunk flexion: $15.8\pm6.7^{\circ}$) at their home-based environment in comparison to controls (walking: $8.9\pm2.1\%$, standing: $19.1\pm4.9\%$, sitting: $17.1\pm9.7\%$, and laying down: $36.2\pm11.0\%$ of the day, trunk flexion: $10.3\pm4.7^{\circ}$; p<0.05). Moreover, LD patients demonstrated reduced balance and gait with increased sway (balance effort: $25.6\pm11.7^{\circ}$, walking: 0.8 ± 0.3 m/s, sway: sagittal: $7.9\pm2.8^{\circ}$, coronal: $7.2\pm3.0^{\circ}$) compared to controls (balance effort: $14.6\pm5.7^{\circ}$, walking: 1.0 ± 4.4 m/s, sway: sagittal: $5.8\pm2.5^{\circ}$, coronal: $3.2\pm1.3^{\circ}$; Figure 2). Strong correlations were found between wearable DFOMs to the PROMIS scores (r2 >0.55, p<0.05).

DISCUSSION AND CONCLUSION: Lumbar decompression and fusion has been demonstrated to decrease disability and improve function in patients with radicular pain caused by nerve root compression. A novel spine-specific wearable system was able to quantify a patient's disability and functional level, with good correlation to improvements reported in PROMs. A combination of disability and function outcome measurements (DFOMs) to supplement PROMs and radiographic measurements provides a more comprehensive evaluation of a spine patient's health and assists physician in better treatment decision-making, a customized definition of return to work, and mitigate risk exposure. It may also be possible for healthcare providers to view their patients' DFOMs in real-time, allowing them to monitor their progress and refine their patient care accordingly.

Figure 1. Example of predict activity data of the spine-specific wearable sensor at home using artificial intelligence (AI). A. Balance/Cone of Economy Analysis; B. Gait Analysis, C. Lifting Analysis, D. Sitting Analysis, E. Sleeping Analysis

