Distal Biceps Tendon Repair with Interlinked Knotless All-Suture Anchors Demonstrates Greater Footprint Optimization and Higher Fixation Strength over Intramedullary Cortical Button Repair: A Biomechanical Study

Jim C Hsu¹, Genevieve Marie Fraipont, Michelle H McGarry², Victor T Hung, Gregory J Adamson³, Thay Q Lee⁴ ¹Department of Orthopaedics & Rehabilitation, Yale School of Medicine, ²Orthopaedic Biomechanics Laboratory, ³Congress Orthopaedic Associates, Inc, ⁴Congress Medical Foundation INTRODUCTION:

Onlay distal biceps tendon repair (DBTR) can reduce iatrogenic posterior interosseous nerve injury risk, enhance bone preservation, and better recreate the tendon-bone interface anatomy. Although anatomic footprint restoration is important to post-repair biceps function, and tendon-cortex contact area is essential to onlay healing, to date DBTR biomechanical studies have primarily assessed fixation strengths, not repair footprints. Therefore, **little is known about potential interactions between DBTR construct configuration, footprint optimization, and fixation security.**

The purpose of this biomechanical study was to evaluate and compare the footprint parameters and fixation strengths of two onlay DBTR constructs: 1) a novel construct with two interlinked, knotless all-suture anchors, and 2) an established construct with an intramedullary cortical button. We hypothesized the new interlinked construct will achieve a larger repair footprint, greater anatomic footprint restoration, and higher fixation strength.

METHODS:

Twenty fresh-frozen cadaveric elbows in 10 matched pairs were thawed, dissected, and side-randomized into 2 matched groups. All distal biceps tendons were sharply detached, secured distally with a tape-reinforced looping suture, then in one group repaired with 1) two unicortical, interlinked 2.6 mm knotless all-suture anchors with repair sutures passed through the looping suture reinforcement (Fig 1A), and in the other group repaired with 2) a 2.6 mm X 7.0 mm intramedullary cortical button with repair sutures in standard tension-slide configuration (Fig 1B). Anatomic and repair footprint areas and locations were captured with a 3D coordinate measurement machine (CMM). The tendon repairs underwent cyclic stressing under progressive loads (50/75/100 N loads, 100 cycles of 0-90° flexion at each load), then were loaded to failure with elbows fixed at 90° flexion.

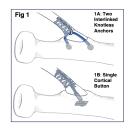
Data collected: **post-cycling tendon-bone gap, ultimate failure load, anatomic footprint, and repair footprint**. Anatomic/repair footprint overlap area as shown by 3D CMM data was used to calculate the **anatomic footprint restoration percentage** (overlap area divided by anatomic footprint area)(Fig 2).

Group means were compared with paired *t*-Test. A sample size calculation based on a pre-study 1- vs 2-anchor pilot test showed n \ge 8 per group would have sufficient power (α =0.05, 1- β =0.80).

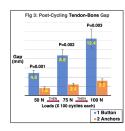
RESULTS:

In footprint analysis and comparison, the interlinked knotless-anchor DBTR construct demonstrated a significantly **larger** repair footprint area (55.1 ± 14.9 mm² vs 35.2 ± 19.8 mm², p=0.032) with greater anatomic footprint restoration percentage ($42.7 \pm 12.9\%$ vs $20.2 \pm 9.4\%$, p=0.003)(Table 1), compared to the intramedullary cortical button construct.

For fixation security, the interlinked knotless-anchor DBTR construct demonstrated a **lower post-cycling tendonbone gap** $(3.2 \pm 1.2 \text{ mm vs } 12.4 \pm 6.6 \text{ mm}, \text{ p}=0.003)$ (Fig 3) and **higher ultimate failure load** $(468.4 \pm 124.2 \text{ N vs } 313.2 \pm 103.4 \text{ N}, \text{ p}=0.001)$ (Fig 4), compared to the intramedullary cortical button construct.


The cortical button construct primarily failed at the fixation knot (6/10), while the knotless anchor construct mostly failed at the suture-tendon interface (5/10)(p=0.004).

DISCUSSION AND CONCLUSION:


In summary, the novel onlay DBTR construct with two interlinked knotless all-suture anchors excelled in footprint optimization and fixation security, achieving a significantly larger repair footprint with greater anatomic footprint restoration, lower post-cycling tendon-bone gap, and higher ultimate failure load, over the single intramedullary cortical button construct.

This study evaluated the first DBTR construct with suture interlinkage, a feature made possible by the novel use of knotless anchors, to directly compress tendon to bone over a broad area similar to the "suture bridge" effect in rotator cuff repair. Most importantly, our findings suggest that **an onlay, interlinked approach to distal biceps tendon repair can optimize repair footprint and also achieve high fixation security** that compares favorably to current inlay and onlay DBTR options.

In conclusion, our study presents favorable biomechanical evidence that suggest the novel interlinked onlay DBTR construct can **enhance repair healing**, **improve post-repair biceps function**, and **facilitate early rehabilitation**, to improve overall clinical outcome.

Fig	y 4: U	ltimate	Failure L	oad		
600						
500		P = 0.001				
400			468.4	-		
N 300		313.2	-			
200	_			-		
100	_		-			
0						
[•1	Button	2 Anch	nors		

	Two Anchors	Single Button	P-Value
Post- Repair Footprint (mm ²)	<mark>55.1</mark> ± 14.9	<mark>35.2</mark> ± 19.8	0.032
Native Footprint Restored (%)	<mark>42.7</mark> ± 12.9	<mark>20.2</mark> ± 9.4	0.003