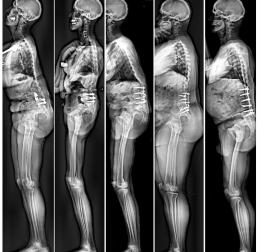
Assessment of Modern latrogenic Flatback Syndrome: Nearly 70% of Short Lumbar Fusions had Undercorrection of L4-S1 Lordosis

Bassel Diebo, Manjot Singh, Mariah S Balmaceno-Criss, Mohammad Daher¹, Lawrence G Lenke², Christopher Ames, Douglas C Burton³, Stephen J Lewis⁴, Eric O Klineberg⁵, Renaud Lafage⁶, Robert Kenneth Eastlack, Munish C Gupta⁷, Gregory Michael Mundis, Jeffrey Gum⁸, D. Kojo Hamilton⁹, Richard A Hostin, Peter Gust Passias¹⁰, Themistocles Stavros Protopsaltis¹¹, Han Jo Kim, Christopher I Shaffrey¹², Breton G Line¹³, Praveen Mummaneni, Pierce Dalton Nunley¹⁴, Justin S Smith¹⁵, Jay D. Turner¹⁶, Juan Santiago Uribe¹⁷, Robert Shay Bess, Virginie Lafage⁶, Alan Daniels¹, International Spine Study Group

¹Brown University, ²Columbia University/Allen Hospital, ³Univ of Kansas Med Ctr, ⁴Tornoto Western Hospital, ⁵Uthealth Houston, ⁶Lenox Hill Hospital, ⁷Dept. of Orthopedics, ⁸Norton Leatherman Spine Center, ⁹University of Pittsburgh School of Medicine, ¹⁰NY Spine Institute / NYU Medical Center-Hjd, ¹¹NYU Hospital For Joint Disorders, ¹²Duke University, ¹³Denver International Spine Center, ¹⁴Spine Institute Of Louisiana, ¹⁵University of Virginia, ¹⁶Barrow Neurological Institute, ¹⁷University Of South Florida

INTRODUCTION: Revision spinal procedures in deformity patients are costly and invasive. However, the prevalence, modes of failure, and extent of deformity of iatrogenic ASD is unknown.


METHODS:

ASD patients with (IATROGENIC) and without (PRIMARY) prior spine surgery were included. IATROGENIC patients were prior short (L1-iliium) (IATROGENIC DEGEN) and long fusion (IATROGENIC DEFORMITY) constructs. DEGEN patients were further stratified into common modes of failure: implant, junctional, malalignment, and neurologic. Comparative analyses were performed on baseline demographics, spinopelvic alignment, offset from published segmental lordosis goals, patient-reported outcome measures (PROMs), and surgical procedures.

RESULTS: Among 785 patients, 430 (55%) were PRIMARY, 181 (23%) were IATROGENIC DEFORMITY, and 174 (22%) were IATROGENIC DEGEN. DEGEN modes of failure included 27% implant, 40% junctional, 73% malalignment, and 28% neurologic. DEGEN patients were older (PRIMARY=60.6 vs DEGEN=66.3 years) and frailer (2.8 vs 4.4), and had worse baseline deformity (PT, PI-LL, SVA, L4-S1) and PROMs (NRS Back Pain, ODI, SRS-12 Total) compared to primary patients (all p<0.001). Segmental lordosis analysis revealed that 98/131 (75%) of SRS-Schwab type N patients were undercorrected, and only 12% were matched to L4-S1 goal (35-40 degrees). Likewise, 67/93 (72%) patients with L4-S1 spanning constructs, 19/21 (91%) patients with L1-L4 spanning constructs, and 10/11 (91%) patients with L1-S1/ilium spanning construct were undercorrected (**Figure**). DEGEN patients more often underwent 3-column osteotomies (12% vs 30%, p<0.001) and decompression (50% vs 62%, p=0.021), and had a higher Surgical Invasiveness Score (78.3 vs 87.8, p=0.006).

DISCUSSION AND CONCLUSION:

Nearly half of ASD surgeries were revision spinal fusions. Revisions were predominantly associated with sagittal malalignment with 72-91% being undercorrected to segmental lordosis goals, often at L4-S1. Revision patients underwent more invasive procedures, such as 3-column osteotomy. Further initiatives to optimize alignment are needed to avoid costly and invasive deformity corrections.

	PRIMARY (N=430)	(N=174)	P value
Spinopelvic Parameters			
PT (°)	23.0 (10.8)	28.0 (9.1)	<0.001
PI (°)	52.9 (12.6)	57.9 (13.9)	<0.001
TK (°)	-35.5 (21.3)	-30.1 (17.6)	0.003
LL (°)	39.4 (24.0)	28.3 (21.1)	<0.001
L1-L4 (°)	3.2 (20.1)	1.6 (18.7)	0.556
L4-S1 (°)	36.2 (15.2)	26.7 (13.0)	<0.001
PI-LL (°)	13.5 (22.0)	29.6 (18.5)	<0.001
SVA (mm)	50.8 (61.5)	106.3 (66.8)	<0.001
T1SPi (°)	-1.9 (5.9)	3.3 (6.7)	<0.001
Patient-Reported Outcome Measures			
NRS Back Pain	6.9 (2.4)	7.6 (2.0)	<0.001
ODI	41.0 (18.1)	50.5 (15.0)	<0.001
SRS-22 Total	2.9 (0.6)	2.7 (0.5)	<0.001

Figure 1. Preoperative imaging (left) and outcomes (right) for patients undergoing fusion with and without previous lumbosacral fusion.

Abbreviations: PT = Pelvic Tilt, PI = Pelvic Incidence, TK =

Abbreviations: PT = Pelvic Tilt, PI = Pelvic Incidence, TK = Thoracic Kyphosis, LL = Lumbar Lordosis, L1-L4 = L1-L4 Lordosis, L4-S1 = L4-S1 Lordosis, PI-LL = Pelvic Incidence minus Lumbar Lordosis, SVA = Sagittal Vertical Axis, T1SPi = T1 SpinoPelvic Inclination, NRS = Numerical Rating Scale, ODI = Oswestry Disability Index, SRS-22 Total = Scoliosis Research Society 22-Item Total.