Application of Survival Machine Learning Methodology to Predict Time-Dependent Risk of Revision Anterior Cruciate Ligament Reconstruction Graft Failure in the MARS Cohort

Kinjal Vasavada¹, Vrinda Devang Vasavada, Sai Devana, Changhee Lee, Sharon L Hame², Laith M Jazrawi³, Rick W Wright⁴, Laura Huston⁵, Amanda Haas Braun⁶, Christina R Allen, Daniel E Cooper, Thomas M DeBerardino, Brick A Lantz, Kurt P Spindler⁷, Michael J Stuart, Annunziato Amendola⁸, Christopher C Annunziata⁹, Robert A Arciero¹⁰, Bernard R Bach, Champ Baker, Arthur R Bartolozzi, Keith M Baumgarten¹¹, Jeffrey H Berg¹², Geoffrey A Bernas¹³, Stephen F Brockmeier¹⁴, Robert H Brophy¹⁵, Charles A Bush-Joseph¹⁶, Jay Brad Butler, James L Carey, James E Carpenter, Brian J Cole¹⁷, Charles Leonard Cox, Robert Alexander Creighton¹⁸, Tal S David¹⁹, Warren Dunn²⁰, David Clint Flanigan²¹, Robert W Frederick, Theodore J Ganley²², Charles J Gatt²³, Steven R Gecha, Jo A Hannafin, N Lindsay Harris²⁴, Keith S Hechtman²⁵, Elliott Hershman²⁶, Rudolf Hoellrich²⁷, David Charles Johnson²⁸, Timothy S Johnson²⁹, Morgan H Jones, Christopher C Kaeding²¹, Ganesh V Kamath³⁰, Bruce A Levy³¹, ChunBong Benjamin Ma³², G Peter Maiers³³, Matthew J Matava³⁴, Robert G Marx³⁵, Gregory M Mathien³⁶, David R McAllister³⁷, Bruce Scott Miller, Carl Wilson Nissen³⁸, Daniel Fulham O'Neill, Richard D Parker³⁹, Arun J Ramappa, Michael A Rauh⁴⁰, Jon K Sekiya⁴¹, Kevin G Shea⁴², James R Slauterbeck⁴³, Matthew V Smith³⁴, Jeffrey Tweed Spang⁴⁴, Steven James Svoboda, Timothy N Taft, Joachim Tenuta, Edwin M Tingstad⁴⁵, Armando Felipe Vidal, Darius Viskontas, Richard A White, James Simpson Williams, Michelle Wolcott⁴⁶, Brian R Wolf⁴⁷, James J York⁴⁸

Wolcott⁴⁶, Brian R Wolf⁴⁷, James J York⁴⁶ ¹NYU Langone Orthopedics, ²UCLA, ³Center For Musculoskeletal Care, ⁴Vanderbilt Dept of Orthopaedics, ⁵Vanderbilt University Medical Center, ⁶Washington University St. Louis School of Medicinie, ⁷Cleveland Clinic Foundation, ⁸Duke University, ⁹Orthovirginia, ¹⁰Univ of CT Health Center, ¹¹Orthopedic Institute, ¹²Town Center Orthopaedic Association, ¹³UBMD Orthopaedics and Sports Medicine, ¹⁴University of Virginia, ¹⁵Washington University Orthopedics, ¹⁶Midwest Orthopaedics at Rush, ¹⁷Rush University Medical Center, ¹⁸Dept of Orthopaedics, ¹⁹Synergy Orthopedic Specialists, ²⁰Texas Orthopedic Hospital, ²¹OSU Sports Medicine Ctr, ²²Children's Hospital of Philadelphia, ²³University Orthopaedic, ²⁴Grand River Health, ²⁵UHZ Sports Medicine Institute, ²⁶Lenox Hill Hospital/Ortho Surg, ²⁷Slocum Center, ²⁸The National Sports Medicine Institute, ²⁹National Sports Medicine Institute, ³⁰University of NC- Chapel Hill, ³¹Mayo Clinic, ³²UCSF Med Ctr, ³³Fort Sports Medicine and Orthopedics, ³⁴Washington University, ³⁵Hosp for Special Surgery, ³⁶Knoxville Orthopaedic Clinic, ³⁷UCLA Department of Orthopaedic Surgery, ³⁸PRISM Sports Medicine, ³⁹Cleveland Clinic Hillcrest Hosp Admin Office, ⁴⁰UBMD Orthopaedics & Sports Medicine, ⁴¹MedSport - Univ of Michigan Med Ctr, ⁴²Stanford, ⁴³University of South Alabama Orthopedics, ⁴⁴Univ of NC, Dept of Ortho, ⁴⁵Inland Orthopaedics, ⁴⁶CU Sports Medicine, ⁴⁷Univ of Iowa Hosps & Clinics, ⁴⁸AAMG Orthopedic and Sports Medicine Specialists INTRODUCTION:

Previous multicenter anterior cruciate ligament revision study MARS machine learning (ML) analysis has shown that a novel ML model built using MARS cohort data can predict graft failure at 6 years postoperatively as a binary outcome with moderate ability. However, binary classification does not take into account the time-to-event component of graft failure as an outcome. In contrast, survival models are able to factor the time-to-event component of an outcome, incorporate time dependent variables, and appropriately process censored data to deliver more clinically meaningful outcome predictions. While the previously built binary classifier can provide information about whether or not the primary outcome graft failure will occur at 6 years, survival analysis models are able to provide information on when graft failure occurs (for example, within 2, 4, or 6 years). Therefore, this study sought to apply ML survival analysis methodology to MARS cohort data to produce a model that can most accurately estimate the probability of revision anterior cruciate ligament reconstruction (rACLR) graft failure within 2, 4, and 6 years postoperatively, and identify factors that impact probability estimates at each of these time horizons. METHODS:

rACLR patients were prospectively recruited by MARS group. Preoperative radiographs, surgeon-reported intraoperative findings, and 2 and 6-year follow-up data on patient-reported outcomes (PROs), additional surgeries, and graft failure were obtained. ML models including Cox Proportional Hazards (CoxPH), XGBoost Survival Embeddings (XGBoost), Random Survival Forest (RSF), Extra Survival Tree (EST), and CoxBoost, were built to predict the probability of graft failure within 2, 4, and 6 years postoperatively. Validated performance metrics and feature importance measures were used to evaluate model performance.

RESULTS:

The cohort included 1,142 patients; 4.8% (n=55) experienced graft failure during the 6-year postoperative period. CoxBoost demonstrated the highest discriminative power across all studied time points (Timepoint: Time Dependent C-index | 2-year: 0.725 ± 0.127 | 4-year: 0.669 ± 0.057 | 6-year: 0.645 ± 0.054), with well-calibrated scores (Timepoint: Time dependent Brier Score | 2-year: 0.023 ± 0.012 | 4-year: 0.035 ± 0.010 | 6-year: 0.046 ± 0.012) as listed in Table 1 and Table 2 respectively. Based on the Kaplan Meier survival plot, the survival probability (probability of remaining graft failure

free) at 2, 4, 6 years was 0.977, 0.965, and 0.954 respectively. Within the context of the predictive models, features deemed important for CoxBoost differed from those deemed important for CoxPH predictive ability. DISCUSSION AND CONCLUSION:

Survival machine learning models can predict the risk of rACLR graft failure up to 6 years postoperatively, with the most robust predictions at the 2 years postoperative timepoint. While external validation with further combined registry datasets is required, this present study builds on prior machine learning analyses towards the development of a bedside calculator for rACLR outcome prediction and risk stratification.

for rACLR outcome Table 1. Discrimination statistics at 2, 4, and 6 years postoperatively

Table 2. Calibration statistics at 2, 4, and 6 years postoperatively

Method	2-year C-index	4-year C-index	6-year C-index
CoxBoost	0.725 ± 0.127	0.669 ± 0.057	0.645 ± 0.054
EST	0.666 ± 0.097	0.596 ± 0.103	0.609 ± 0.090
CoxPH	0.638 ± 0.126	0.593 ± 0.074	0.603 ± 0.074
RSF	0.638 ± 0.100	0.619 ± 0.071	0.611 ± 0.083
XGBoost	0.611 ± 0.094	0.626 ± 0.045	0.624 ± 0.031

Method	2-year C-index	4-year C-index	6-year C-index
CoxBoost	0.023 ± 0.012	0.035 ± 0.010	0.046 ± 0.012
EST	0.023 ± 0.012	0.035 ± 0.010	0.046 ± 0.012
CoxPH	0.027 ± 0.013	0.044 ± 0.007	0.056 ± 0.009
RSF	0.023 ± 0.012	0.035 ± 0.010	0.046 ± 0.012
XGBoost	0.027 ± 0.011	0.040 ± 0.007	0.051 ± 0.010