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INTRODUCTION: 
Previous multicenter anterior cruciate ligament revision study MARS machine learning (ML) analysis has shown that a 
novel ML model built using MARS cohort data can predict graft failure at 6 years postoperatively as a binary outcome with 
moderate ability. However, binary classification does not take into account the time-to-event component of graft failure as 
an outcome. In contrast, survival models are able to factor the time-to-event component of an outcome, incorporate time 
dependent variables, and appropriately process censored data to deliver more clinically meaningful outcome 
predictions. While the previously built binary classifier can provide information about whether or not the primary outcome 
graft failure will occur at 6 years, survival analysis models are able to provide information on when graft failure occurs (for 
example, within 2, 4, or 6 years). Therefore, this study sought to apply ML survival analysis methodology to MARS cohort 
data to produce a model that can most accurately estimate the probability of revision anterior cruciate ligament 
reconstruction (rACLR) graft failure within 2, 4, and 6 years postoperatively, and identify factors that impact probability 
estimates at each of these time horizons. 
METHODS: 
rACLR patients were prospectively recruited by MARS group. Preoperative radiographs, surgeon-reported intraoperative 
findings, and 2 and 6-year follow-up data on patient-reported outcomes (PROs), additional surgeries, and graft failure 
were obtained. ML models including Cox Proportional Hazards (CoxPH), XGBoost Survival Embeddings (XGBoost), 
Random Survival Forest (RSF), Extra Survival Tree (EST), and CoxBoost, were built to predict the probability of graft 
failure within 2, 4, and 6 years postoperatively. Validated performance metrics and feature importance measures were 
used to evaluate model performance. 
RESULTS: 
The cohort included 1,142 patients; 4.8% (n=55) experienced graft failure during the 6-year postoperative period. 
CoxBoost demonstrated the highest discriminative power across all studied time points (Timepoint: Time Dependent C-
index | 2-year: 0.725 ± 0.127 | 4-year: 0.669 ± 0.057 | 6-year: 0.645 ± 0.054), with well-calibrated scores (Timepoint: Time 
dependent Brier Score | 2-year: 0.023 ± 0.012 | 4-year: 0.035 ± 0.010 | 6-year: 0.046 ± 0.012) as listed in Table 1 and 
Table 2 respectively. Based on the Kaplan Meier survival plot, the survival probability (probability of remaining graft failure 



free) at 2, 4, 6 years was 0.977, 0.965, and 0.954 respectively. Within the context of the predictive models, features 
deemed important for CoxBoost differed from those deemed important for CoxPH predictive ability. 
DISCUSSION AND CONCLUSION: 
Survival machine learning models can predict the risk of rACLR graft failure up to 6 years postoperatively, with the most 
robust predictions at the 2 years postoperative timepoint. While external validation with further combined registry datasets 
is required, this present study builds on prior machine learning analyses towards the development of a bedside calculator 
for rACLR outcome prediction and risk stratification.

 
 

 


