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INTRODUCTION:
Previous multicenter anterior cruciate ligament revision study MARS machine learning (ML) analysis has shown that a
novel ML model built using MARS cohort data can predict graft failure at 6 years postoperatively as a binary outcome with
moderate ability. However, binary classification does not take into account the time-to-event component of graft failure as
an outcome. In contrast, survival models are able to factor the time-to-event component of an outcome, incorporate time
dependent variables, and appropriately process censored data to deliver more clinically meaningful outcome
predictions. While the previously built binary classifier can provide information about whether or not the primary outcome
graft failure will occur at 6 years, survival analysis models are able to provide information on when graft failure occurs (for
example, within 2, 4, or 6 years). Therefore, this study sought to apply ML survival analysis methodology to MARS cohort
data to produce a model that can most accurately estimate the probability of revision anterior cruciate ligament
reconstruction (rACLR) graft failure within 2, 4, and 6 years postoperatively, and identify factors that impact probability
estimates at each of these time horizons.
METHODS:
rACLR patients were prospectively recruited by MARS group. Preoperative radiographs, surgeon-reported intraoperative
findings, and 2 and 6-year follow-up data on patient-reported outcomes (PROs), additional surgeries, and graft failure
were obtained. ML models including Cox Proportional Hazards (CoxPH), XGBoost Survival Embeddings (XGBoost),
Random Survival Forest (RSF), Extra Survival Tree (EST), and CoxBoost, were built to predict the probability of graft
failure within 2, 4, and 6 years postoperatively. Validated performance metrics and feature importance measures were
used to evaluate model performance.
RESULTS:
The cohort included 1,142 patients; 4.8% (n=55) experienced graft failure during the 6-year postoperative period.
CoxBoost demonstrated the highest discriminative power across all studied time points (Timepoint: Time Dependent C-
index | 2-year: 0.725 + 0.127 | 4-year: 0.669 + 0.057 | 6-year: 0.645 + 0.054), with well-calibrated scores (Timepoint: Time
dependent Brier Score | 2-year: 0.023 + 0.012 | 4-year: 0.035 + 0.010 | 6-year: 0.046 + 0.012) as listed in Table 1 and
Table 2 respectively. Based on the Kaplan Meier survival plot, the survival probability (probability of remaining graft failure



free) at 2, 4, 6 years was 0.977, 0.965, and 0.954 respectively. Within the context of the predictive models, features
deemed important for CoxBoost differed from those deemed important for CoxPH predictive ability.

DISCUSSION AND CONCLUSION:

Survival machine learning models can predict the risk of rACLR graft failure up to 6 years postoperatively, with the most
robust predictions at the 2 years postoperative timepoint. While external validation with further combined registry datasets
is required, this present study builds on prior machine learning analyses towards the development of a bedside calculator

for rACLR outcome prediction and risk stratification.
Table 1. Discrimination statistics at 2, 4, and 6 years postoperatively Table 2. Calibration statistics at 2, 4, and 6 years postoperatively
Method 2-year C-index 4-year C-index 6-year C-index Method 2-year C-index 4-year C-index 6-year C-index

725+£0.12 ; +0.05 645 £ 0.05
SRR, PRS0 DRENU00N DRS00 CoxBoost 0.023+0.012  0.035=0.010 0.046 = 0.012

EST 0.666 £0.097 0.596+0.103  0.609 = 0.090
EST 0.023 £0.012 0.035+0.010 0.046=x0.012

CoxPH  0.638+0.126 0.593+0.074 0.603 =0.074
CoxPH  0.027=0.013 0.044=0.007 0.056 = 0.009
RSF 0.638=0.100 0.619+0.071 0.611 % 0.083
RSF 0.023=0.012 0.035+0.010 0.046=0.012
XGBoost 0.611+0.094 0.626£0.045 0.624 = 0.031

XGBoost 0.027£0.011 0.040%0.007  0.051 £ 0.010




