Association of Urine-Cobalt, Blood-Cobalt, and Exposure-Duration to Cobaltism Symptoms: A Prospective studS of 230 Post-Arthroplasty Patients

Stephen S Tower¹, Christina S Cho², Robert Loren Bridges³, Bradford Gessner

¹Tower Orthopedic & Joint Replacement, ²Tower Joint Replacement Clinic, ³Aegis Imaging Consultants INTRODUCTION:

Cobalt toxicity afflicts metabolically active organs, most significantly the brain and heart.^{1, 2} The resulting toxidrome, known as cobaltism, was first noted sixty years ago from vocational exposure, cobalt-chloride hematemics, or cobalt laced beer.¹ Jones³ described systemic dissemination of cobalt from 1970s-era metal-on-metal hip implants.

Cobaltism from modern primary hip replacement was first reported in Alaskans⁴ in 2010 then Australians⁵ in 2011. Data from an Australian joint-replacement registry spurred the first of a hip because and risked risk of revision because of cobalt related complications.⁶ Any cobalt-chromium orthopaedic component may result systemic cobalt exposure from wear or corrosion placing tens of millions at-risk for cobaltism.^{2, 4, 7-16}

Cobalt from orthopaedic implants accumulates in the brain, nerves, heart, liver, kidney, and cerebrospinal fluid.^{1, 3, 4, 8, 9} Advanced cobaltism is a catastrophic illness that can manifest as Parkinsonism,¹³ blindness, deafness, numbness, weakness, or heart failure.^{1, 7-9} Unfortunately, cobaltism may escape diagnosis until irreversible neurologic impairment, heart transplantation, or death occurs.^{1, 8, 9, 13} Prodromal cobaltism symptoms are non-specific and easily misattributed to primary psychopathy, aging, idiopathic cardiomyopathy, or dementia.^{2, 4, 5, 8-13} Early cobaltism appears to be largely reversable,^{2, 4, 5, 8, 11-13} rendering diagnosis at this stage essential.

The relationship between cobaltism severity and urine-cobalt, blood-cobalt, and exposure-duration lacks prospective investigation. We therefore screened post-arthroplasty patients for cobaltism symptoms with a directed history and physical and a spot urine-cobalt. We adapted an industrial cobaltism questionnaire,¹⁵ and inventories used for systematic literature reviews,^{8, 9} into a healthcare provider administered and scored instrument. We then related scores from this survey to cobalturia, cobaltemia, and exposure-duration.

We investigate whether urine-cobalt of \geq 1.0 or blood-cobalt of \geq 0.4 ppb and exposure-duration to chrome-cobalt orthopaedic-implants relate to cobaltism symptoms.

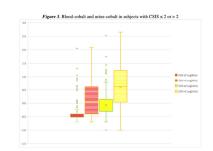
METHODS:

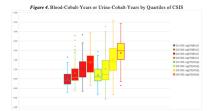
Prospective study of 230 patients post hip, knee, or shoulder arthroplasty with cobalt-chromium component(s) presenting to one community surgeon.

Subjects were assigned a Cobaltism-Symptom-Inventory-Score (CSIS) based on a protocolized interview and examination followed by a spot urine-cobalt or blood-cobalt determination. RESULTS:

A total of 129 (56%) subjects were cobalturic (U[Co] \geq 1.0 ppb) or cobaltemic (B[Co] \geq 0.4 ppb). The product of years exposed to a cobalt-chromium implant and urine-cobalt or blood-cobalt significantly positively associates with the CSIS. In total, 122 (53%) of subjects had a CSIS of >2, this status significantly associates with cobalturia or cobaltemia. Median [IQR] urine-cobalt in the subjects with a CSIS >2 was 4.1[1.1-17.0] compared to 0.5[0.5-1.4] in subjects with CSI score \leq 2. Cobalturia has a sensitivity of 0.69, a specificity of 0.77, and a positive predictive value of 0.74 for prodromal cobaltism as defined as a CSIS of >2.

DISCUSSION AND CONCLUSION:


We find the Cobalt-Symptom-Inventory-Score significantly positively correlates with the product of exposure-duration and urine-cobalt or blood-cobalt indicating a dose-response-relationship. Cobalturia or cobaltemia is specific, sensitive, and positively predictive of early cobaltism as defined as a CSIS of >2. These findings are consistent with other studies with a similar degree of cobalturia or cobaltemia finding quantitative brain hypometabolism,² brain atrophy,¹⁴ retinopathy,¹⁸ Obstructive-Sleep-Apnea,¹⁹ and quantitative audiovestibular dysfunction.²⁰


Obstructive-Sleep-Apnea,¹⁹ and quantitative audiovestibular dysfunction.²⁰ The large at-risk population with orthopaedic cobalt-chromium implants,¹⁶ the treatability of early cobaltism,^{2, 11, 12, 21} and the severity and irreversibly of the severe cobaltism,^{8, 9, 13} position orthopaedic-implant cobaltism as an ideal malady for screening. Patients with severe cobaltism or those with periprosthetic toxicity benefit from revision of wearing or corroding implants to cobalt-free alternatives and delay in revision surgery may result in irreversible neurologic and cardiac pathology.^{9, 10} OTC N-acetylcysteine may benefit cobalturic or cobaltemic patients.^{2, 11, 12, 21}

Cobaltism should be considered in the differential diagnosis for at-risk patients experiencing cognitive decline, constitutional deterioration, or progressive neurologic, psychiatric or cardiovascular pathology with or without periprosthetic symptoms because orthopaedic-implant cobaltism is both common and treatable.^{2, 4, 5, 8-12, 18, 20, 21} Further implantations of cobalt-chromium orthopaedic-implants should be tempered given known safer materials.

Table 1. Cobaltism-Symptom-Inventory Score criteria

Felge	Forgefultess	Cloanized Mood	Drambered Steep	Inbalance or Redormo	Numbrano	Enabers or	Trene/	Social and a second second	Ceneralian
					Econites	Tenta	Neusnatur	Visual Dysfumbon	Pain
Especies	(Experied	© Expected	3 Expended	0 Expensed	6 Norre	3 Especied	3 None	3 Especied	IEquiei
1 Excessive	1 Excessive	1 Excession	1 Example	1 Example	1 Minar	1 Excessive	1 Minur	1 Example	1 Excessiv
					2 Hodenite		2 Moderate		
					1.5even		3 Severe		

