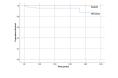
Mid-term Clinical and Radiographic Outcomes of a Monobloc Tapered Stem for Paprosky 3 and 4 Femoral Bone Defects

Christian Thomas Oakley, Brandon Passano, Simon Lalehzarian, Stephen J Incavo¹, William Lutes, Kwan Park¹, Richard W McCalden², Ran Schwarzkopf³

¹Houston Methodist Hospital, ²London Health Sciences Centre, ³NYU Langone Orthopedic Hospital, Hospital For Joi INTRODUCTION:

Achieving primary stability in conversion and revision hip arthroplasty (rTHA) cases with significant femoral bone loss is technically challenging. Modern monobloc fluted titanium tapered stems (FTTS) have been increasingly utilized for these cases. This study sought to determine the radiographic and clinical outcomes of a monobloc FTTS in patients with significant femoral bone loss at mid-term follow-up.


METHODS:

A multicenter retrospective observational study of all conversion and revision THA patients who received a monobloc FTTS with significant femoral bone loss and up to 5-year radiographic follow-up was conducted. Patients with a femoral Paprosky Classification of Illa, Illb, and IV were included. Stem subsidence and osteointegration were assessed on the most recent radiograph. All-cause re-revisions and survival of the stem at latest follow-up was assessed. Descriptive statistics were calculated for each output.

RESULTS:

Eighty-five monobloc FTTS were examined. Median clinical follow-up was 28.5 months (range, 18.0 to 57.8 months). Median subsidence was 1.4 millimeters (mm) (range, 0 to 15.0 mm). Sixteen (22.8%) and 3 (4.3%) had subsidence greater than 5 mm and 10 mm, respectively. Seventy-eight of 81 (95.1%) stems had osteointegration at latest follow-up. Ten (11.7%) required reoperations: four for periprosthetic joint infection (PJI), two for distal femoral periprosthetic fractures, two for acetabular periprosthetic fractures, one for the removal of a trochanteric plate, and one for hip instability. Within the 10 reoperations, five (5.8%) stems were removed; four due to PJI and one due to an acetabular periprosthetic fracture at one month postoperatively. Kaplan-Meier analysis yielded an all-cause stem survivorship of 95.8% at 2 years and 88.5% at 4 years. Stem survivorship free of aseptic failure was 100.0% at both 2 and 4 years.

DISCUSSION AND CONCLUSION: Monobloc FTTS in complex femoral reconstruction cases show encouraging clinical and radiographic results in patients with significant femoral bone loss at up to 5 years follow-up.

	No. of hips (n=85
ige (years)	65.5±13.4
dale- no. (%)	34 (40.0)
IMI (kg/m²)	29.0±7.2
moking Status- no. (%)	
Current	6 (7.1)
Former	33 (38.8)
Never	46 (54.1)
tace- no. (%)	
White	60 (70.6)
African American	12 (14.1)
Asian	0 (0.0)
Other	13 (15.3)
SA Class- no. (%)	
1	0 (0.0)
2	31 (36.5)
3	47 (55.3)
4	7 (8.2)
aprosky Classification	
I	0 (0.0)
II	0 (0.0)
IIIa	71 (74.0)
Шь	11 (11.5)
IV	3 (3.1)

Surgical Indication	No. of hips (% (n=85)		
Periprosthetic Fracture	29 (34.1)		
Aseptic Loosening	20 (23.5)		
PJI (second stage revision)	20 (23.5)		
Trunnionosis/Metallosis	5 (5.9)		
Hip Dysplasia ¹	4 (4.7)		
Dislocation	2 (2.4)		
Liner Wear	2 (2.4)		
Post-traumatic Arthritis	1 (1.2)		
Avascular Necrosis	1 (1.2)		
Congenital Deformity	1 (1.2)		

	No. of hips (n=85)
Type of operation- no. (%)	
Complex primary	4 (4.7)
Conversion	13 (15.3)
Berleion	68 (80.0)
ETO performed	7 (8.2)
Revised components- no. (%)	
Ferner	3488 (50.0)
Femur and acetabulum	34/68 (50.0)
Intrasperative cable use- no. (%)	42 (49.4)
Number of intrasperative cables	3.31+1.99
Stem length-no. (%)	
190 mm	40 (47.1)
240 mm	29 (45.9)
200 mm	6 (7.5)
Stem offset	
Standard	44 (51.7)
High	41 (48.3)
Stom diameter (median [IQR]) (mm)	17.0 (16.0-19.0)
Femaral head size (median (IQR)) (mm)	32.0 (38.0-36.0)
Femoral head offset (modian (IQR)) (mm)	3.0 (0.0-4.0)

		Time to	Forme to Residen			lanari T		
	-CKA	Cit	н	Perintips or CES, burnise of professionary	Y	Ÿ	Ť	Ÿ
2	Carrunion TRA		Perpendicts discuss of the conductor coulding tomorro discussionals	RevERA	¥	Ÿ	Ť	Ŷ
		96.5	ri .	Periodic in CES, barries of mo-ethology arthor; speci-	Y	Y	Ŧ	T
3	Comunica TEA	1.1	Peripensituria disursani al Re accelerituri	ResTRA	W	Y	¥	γ
•	CKA	9.2	PR.	Pleasurings or (TSS, insertion of Attention profiled concern	¥	Y	Ŧ	Y
	Common TAA, ETE-vill-ORD		Pain	Removed of trachatomy plant	×	N	5	×
,	CHA	31.5	Perjoration Status, Secure C desiliation	om	×	×	3	76
		403	PE, non-serior greater technologic factors	DIES	×	Y	Ŧ	×
		40.6	м	First engras CESs, inscrior of drawnic architectures	4	Y	×	Y
		233	н	toution of any which they well-into space with the lances. pts	y	Y	Ť	Y
•	HOLA	94.1	Perjambala frames, Sancora C danification	CALL .	×	N	×	×
*	4004	3.3	N	Fire angle to CESs, insertion of artificial resour	y	Y	Y	Y