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Abstract

An overall reduction of pedestrian-vehicle collisions is expected with the market penetration of
Advanced Driver Assistant System (ADAS) and autonomous driving (AD) functions. The perfor-
mance of ADAS is commonly evaluated through virtual scenario-based testing. Hence, scenario
catalogs that represent realistic pedestrian-vehicle interactions are needed.

This study shows an approach to automatically extract pedestrian-vehicle scenarios at a se-
lected road intersection, which was observed with a dual-lens stationary observation system. A
deep learning-based visual perception pipeline was implemented to reconstruct road user trajec-
tories via state-of-the-art object detection, visual multi-object tracking and object re-identification
models. These models were trained and fine-tuned on a manually annotated, diverse dataset, ran-
domly sampled from recordings over multiple weeks. All models were evaluated using common
performance metrics. Additionally, localization precision of reconstructed trajectories was as-
sessed using georeferenced ground truth measurements conducted at the intersection. The visual
perception pipeline was applied on selected video data and extracted trajectories converted ac-
cording to the openSCENARIO standard, including a virtual representation of the selected road
intersection. The compiled scenarios were further simulated with the openPASS framework.

The results show that pedestrians and vehicles were tracked with high accuracy (Multiple
Object Tracking Accuracy > 83.2%) and trajectories were reconstructed with a mean deviation
of 0.9 m for pedestrians and vehicle paths with a deviation of 0.68 (SD 0.5) m. The observation
system allowed both the obtaining of typical pathways and also speed profiles. An exemplary
reconstructed scenario was successfully resimulated in the openPASS framework.

The described approach is promising and can be used to create new scenario catalogs for
scenario-based assessments in line with the openSCENARIO standard. Furthermore, the view-
point of the observation system allows the reconstruction of pedestrian attributes including poses,
age or gender, which, alongside an analysis of the recorded pathways and speed profiles with
respect to influencing factors, is a focus of ongoing research.
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1 INTRODUCTION

Every 5th road user killed in Europe is a pedestrian [11]. To counteract this trend, partner protection
by other road users is an issue of great importance. ADAS and AD functions, such as Forward
Collision Warning (FWC), Autonomous Emergency Braking (AEB), evasive steering or combinations
of these are promising technologies to decrease the number of pedestrian accidents or at least to reduce
collision speeds [23, 40], which has a positive effect on pedestrian’s injury risks [38]. Scenario-based
evaluation is a commonly used method to assess the effectiveness of ADAS for pedestrian safety.
The creation of scenario catalogs, consisting of critical pedestrian-vehicle interactions is a major
challenge. This effects on the one hand the scenario representation, but also the usage of appropriate
data sources. The representation requires a domain-specific scenario description language (SDL),
which needs to be in line and interpretable by the underlying simulation environment. A commonly
used SDL is openSCENARIO [1], which requires a model of the scenery and the integration of the
dynamic entities through storyboards. In order to fill those storyboards, reconstructed real-world
accidents can be used according to [8, 16]. In addition to the fact, that accidents are rare events [22],
leading to small sample sizes, the pedestrian movement prior to a collision can only be reconstructed
with great difficulty and is thus often simplified, i.e. assumed to be constant. To compensate this
drawback more data on pedestrian behavior and movement is needed.

Camera-based traffic observations are a promising alternative to complement missing information
and benefit from new deep learning approaches for automatic scene reconstruction, capable to detect
(e.g. [20, 34]) and track objects (multiple object tracking (MOT)) over multiple video frames (e.g.
[48, 51]). Scene reconstruction can therefore be used to better understand the pedestrian behavior
in the pre-crash phase [39, 26] but also to derive entire scenario catalogs [50, 4], which incorporate
information of the entire scenery, i.e. not only of the conflict partners.

There are a variety of different pedestrian observation datasets recorded for specific application
purposes. Datasets that record pedestrian movements from a static observation point, e.g. [2], mostly
serve as benchmarks for tracking algorithms and usually do not provide interaction with other road
users, i.e. vehicles. Datasets recorded from a vehicle centered view, as shown in [13, 45, 7] have the
drawback that trajectories are only recorded over a relatively short time horizon. The datasets pub-
lished by [50, 4] record pedestrian-vehicle interactions with drones, which make difficult any further
determining of pedestrian attributes, such as i.e. age [5] or distractions [42, 19], which have an im-
pact on pedestrian behavior. Thus, a trade-off between the level of detail and the overall observability
of the scenery must be ensured to provide the necessary details for reconstructing pedestrian-vehicle
interactions.

The objective of this study is to present a framework to automatically derive pedestrian-vehicle
scenarios capable of integration in common traffic simulation frameworks from a camera-based ob-
servation system.

2 METHOD

For automatic extraction of pedestrian and vehicle trajectories, state-of-the-art computer vision algo-
rithms, consisting of deep learning-based visual MOT and image classification models, are combined
to a visual perception pipeline. Different datasets were generated in order to enhance the performance
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of existing tracking and classification models, but also to evaluate the accuracy of reconstructed tra-
jectories. The traffic observation and the newly generated datasets build the first part of this section,
while road network modelling and the visual perception pipeline for trajectory reconstruction build
the second part. Details on the simulation of selected reconstructed scenarios complete this section.
The overall approach of this and the interplay of the different parts is shown in Figure 1.

Figure 1. Outline and interplay of different components for automatic scenario extraction with a
camera-based traffic observations system. The dataflow among different components is highlighted
through arrows. Recorded data from the observation system is the input for the trajectory reconstruc-
tion process (blue frames), selected images (green frames) are combined into datasets to enhance
(Training/Calibration, orange arrow) and quantify the reconstruction accuracy (Evaluation, yellow
arrow). Reconstructed trajectories were aligned with the road network (grey) and incorporated in a
simulation environment (black arrow).

2.1 Camera-based Observation

A robust system was developed for camera-based observation, which enables continuous data extrac-
tion even under extreme weather and temperature conditions. As shown in Figure 2, it consists of an
Industrial Personal Computer (IPC) inside of a robust control cabinet, on which a dual-lens camera
and a long-term evolution (LTE) antenna are mounted. The combined field of view (FOV) of the
dual-lens camera thus allows recording of almost 180◦, shown in Figure 3.

The camera-based observation system was installed at an intersection of two private service roads,
forming a T-junction, at the campus Inffeldgasse of Graz University of Technology. At the observation
point, the traffic operates in accordance with the Austrian road traffic regulations, which implies right-
hand driving and giving priority to the right at intersections. A speed limit of max. 20 km/h applies
within the area. Furthermore, ground markings and road signs give information about towing zones
as well as other prohibitions or bans. Sight obstructions, caused by parked vehicles as well as a large-
scale art installation (a frame structure spanning the road), lead to a potential threat for pedestrians
and potentially to interesting and frequent interactions with vehicles.

In order to record the intersection appropriately with the camera-based observation system, it was
mounted at the frame structure of the art installation at a height of approximately 5 m, as shown in
Figure 2. The cameras were aligned accordingly to best observe the events at the road intersection,
which is shown in Figure 3.

Since the projection of 3D real world information onto a 2D image discards metric information,
the dual-lens camera must be properly calibrated to allow recovering of 3D units from image-based
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measurements. To this end, the system was calibrated intrinsically (using the calibration target and
framework from [12], which extends [6]) which allows image rectification, i.e. to correct the inac-
curacies caused by the inherent distortion of the optical lenses (which is most notable at the image
border). To align the rectified camera images with a common World Coordinate System (WCS) de-
noted as OW , i.e. extrinsic calibration, the AprilTag [36] framework was used. These calibration
markers can be robustly detected outdoors and yield a sufficiently low pose estimation error. In par-
ticular, the translation and rotation errors over 20 consecutive video frames are ≤ 1.5mm and ≤ 0.1◦,
respectively. In this study the WCS was calibrated in such a manner that an XY -plane is placed on
the ground (i.e. at Z = 0), and the Z-axis is pointing up, see Figure 3.

Figure 2. Mounted observation system at campus Inffeldgasse. The left image shows the observation
system mounted at the art installation at the selected intersection. A sign informs pedestrians about
the project and the legal basis of data collection. The right image shows the main components of the
observation system, which consists of an IPC, connected to a Mobotix S16B camera body and the
two camera lenses. An LTE antenna is mounted on the side of the control cabinet.

Figure 3. Left and right FOV of the installed observation system at the selected intersection. The
extrinsic camera calibration defines the WCS OW , which is illustrated via arrows pointing along the
major axes (red: X-axis, green: Y -axis, blue: Z-axis).
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2.2 Datasets

The camera placement of the observation system allows recording of the events at the selected inter-
section, but it does not resemble the viewing angle of publicly available datasets. Thus, the object
detection, tracking and re-identification models had to be properly adjusted via finetuning. For this,
we collected a sufficiently diverse image dataset. In addition to the collected image data, dedicated
experiments were performed, in which georeferenced locations of vehicles and pedestrians were mea-
sured. This data was used to evaluate the accuracy of the trajectory reconstruction process.

2.2.1 Image Data

In order to generate a suitable dataset for fine-tuning and performance evaluation of a MOT algorithm,
a dataset consisting of 10,800 frames was created from the recorded videos at the observation point.
Each frame was manually annotated using the CVAT tool [43], where each annotation consists of an
object’s bounding box, as well as other relevant attributes, such as age category, gender, personal mo-
bility device (scooter, bicycle, etc.) and potential distractions caused by smartphones or headphones.
One part of the dataset, consisting of 7,200 frames, acts as training, the other as evaluation data. Due
to the demographic conditions at the selected intersection, some attributes and objects are underrepre-
sented, when sampling uniformly from the sample images (e.g. children, adolescents). To cope with
this issue, particular interesting samples have been searched manually.

2.2.2 Ground Truth Motion Data

For estimating the accuracy of the trajectory reconstruction process, geolocations of pedestrians and
vehicles were measured within dedicated tests. The geolocations were measured in both cases with
an inertial navigation system (INS), using the Global Positioning System (GPS). Going forward, this
measured data will be denoted as ground truth (GT) motion data. The temporal synchronization
between video and the GT motion data was established through timestamps, associated to each video
frame and the measurement, respectively.

Pedestrian The measurements of pedestrian GT motion data were designed to further allow for
estimating the accuracy of the camera projection with respect to the WCS. For measuring the GT
motion data, the INS (type: OxTS RT3000 v2 [30]) was mounted on a trolley. In order to be able
to identify the INS in the recorded video frames using the AprilTag [36] framework, the trolley was
equipped with a calibration tag, offset relative to the INS (in the reference frame of the measurement
trolley). The INS base station was placed near the measurement area, with a sufficient distance to
surrounding buildings that could have shielded the GPS signal and thereby could have introduced
additional uncertainties. The developed measurement setup is shown in Figure 4.

In the experiment, the trolley was moved in the scene in such a way that it was visible in the video
recordings. By this means the area of interest was covered by a grid of measurements with a spacing
of about 1 m, resulting in around 200 distinct georeferenced measurement positions. Each position
was captured for approximately 10 s, during which the trolley remained stationary. This made it easier
to extract the particular image point and the corresponding GT position data. For the further usage,
the position data of each measurement position was time-averaged to reduce measurement noise.

Vehicle For recording GT vehicle motion data, a dedicated test vehicle has been adapted to the
needs of this investigation. Figure 5 sketches the vehicle setup schematically. Its setup consists of
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Figure 4. Schematic representation of the measurement setup installed on the movable trolley. The
trolley was equipped with a calibration tag, the INS and its GPS antenna. Illustrated are the measured
GPS track (black dashed), as well as the projected tag position (purple) and the trajectory resulting
from the tracked operator (orange).

a data acquisition unit (DAU) (type: dspace AUTERA autobox operated by Intempora RT-MAPS
4 data acquisition software) which collects and synchronizes data from different sensor sources. A
combination of accurate GPS-RTK (type: Novatel OEM 6, corrected by APOS service) and intertial
measurement unit (IMU) (type: Genesys ADMA-III) is used to record trajectories and dynamic driv-
ing states (position angle, speeds, acceleration etc.). This is complemented by a Light Detection and
Ranging (LiDAR) sensor (type: OUSTER OS1-128) which operates with a resolution of 128 x 1024
at 10 Hz and triggers the recording of the installed camera system (type: IDS - UI-5240CP with
TAMRON M118FM08 lens).

Within the experiment the test vehicle was driven through the intersection several times, covering
all dedicated routes given by the road network, as shown in Figure 6. The test drives were made in the
speed range foreseen for the intersection. Further, recordings include typical interactions with other
road users, especially pedestrians, in which the driver gives right of way and vice versa.

Figure 5. Schematic representation of the measurement setup installed in the test vehicle. The vehicle
was equipped with a DAU, an IMU for measuring geolocation as well as a LiDAR sensor and a
camera system. Shown are the GPS track (black dashed) that was measured in the conducted test and
the projected trajectory resulting from the scenario reconstruction (blue).

2.3 Road Network Modelling

The static environment of the selected observation point (discussed in Section 2.1) serves as a basis
for the agent simulations and have been digitized such that they are in line with the specifications of
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the openSCENARIO [1] standard. In the following the 3D scene representation is explained as well
as its alignment with the reconstructed trajectories in WCS.

2.3.1 3D Scene Representation

For the modelling, freely available, high quality geographic data of the selected intersection was used.
This includes the direct proximity to the mounted observation system within the observation (e.g.
intersection, crosswalks, etc.) as well as the adjacent road network within a radius of about 100 m.
Orthophotos, retrieved from [15], as well as surface and terrain information, retrieved from [14], were
used as data sources. As a pre-processing step, both data sources were merged and processed with
QGIS [32]. For the creation of the 3D scenes, RoadRunner [29] was used. The construction of the
road network, including sidewalks, was done manually, based on orthophotos of the observation point.
The resulting 2D road network was supplied with terrain information and exported as an openDRIVE
file. A visualization of the resulting 3D openDRIVE road network is shown in Figure 6.

Figure 6. Modelling of the Inffeldgasse observation site. In the left image the orthophoto of the
intersection area is shown. In the right image a 3D model of the observation point including the
overlay of the openDRIVE network and the driveable routes.

2.3.2 Coordinate System Alignment

As described in Section 2.1, the WCS OW is determined by the extrinsic camera calibration, which is
used to recover 3D information of the road users, i.e. projecting trajectories to the ground plane. Re-
constructed trajectories need to be transformed from the WCS to the OpenDRIVE Coordinate System
(OCS) OOD in order to obtain the representation of the trajectory in openSCENARIO. This OCS is
bound to the georeferenced openDRIVE representation of the scene and therefore its coordinate axes
are aligned to the cardinal directions following the east-north-up (ENU) convention.

GT motion data from the trolley measurements was used to determine the transformation TW2OD

between WCS and OCS. Therefore a third, intermediary coordinate system (ICS) OI was defined
by a reference tag at a selected measurement location I . Through the georeferenced position and
orientation of I , the transformation of OI relative to OOD is known. Further, the transformation from
OI to OW can be computed using the AprilTag framework. TW2OD is thus defined by chaining these
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transformations. It should be noted that only the Z-rotation angle (heading) of I was used, since pitch
and roll angle were both relatively small, and their influence on the X/Y position was thus deemed
negligible (< 5 cm).

2.4 Trajectory Reconstruction

The implemented visual perception pipeline for automated trajectory reconstruction consists of four
building blocks, as shown in Figure 7. The central part includes the MOT algorithm, which localizes
the road users, i.e. pedestrians and vehicles, throughout video frames while maintaining their identitys
(IDs). Tracked road users in image coordinates then have to be mapped to the scenery representation
(ground plane (WCS) and further to OCS), which forms the second part of the pipeline. To obtain
consistent trajectory IDs across the partially overlapping FOVs of the dual-lens camera, the third step
is to match corresponding road user trajectories across both FOVs. Finally, a post-processing step
suppresses potential measurement noise from the reconstructed trajectories.

Figure 7. Schematic representation of the visual perception pipeline for trajectory reconstruction.
The input frames from the cameras’ FOVs are processed by the four building blocks, multiple object
tracking, ground plane projection, re-identification and trajectory filtering.

2.4.1 Multiple Object Tracking-by-Detection

The MOT algorithm used follows the tracking-by-detection paradigm and provides a favorable bal-
ance between high accuracy and low run-time. It leverages a state-of-the-art single-stage object de-
tector, i.e. YOLOv5 [20, 34], which generates object hypotheses in the form of bounding boxes (i.e.
rectangular regions which likely contain an object) per frame. These object hypotheses are then tem-
porally linked to object trajectories via an implemented multi-class capable extension of the Deep-
SORT [48] MOT algorithm. For improved robustness, the standard appearance feature estimation in
DeepSORT was replaced by the re-identification model OSNet [51], which performs favorably for
varying object sizes and is thus more suitable for deployment in this study’s observation scenario.

The output of the tracking step is a sequence of bounding boxes for each road user k over time t,
i.e.

O(k) =
(
O

(k)
tinit

, . . . , O
(k)
tend

)
, (1)

where a bounding box O
(k)
t = (x

(k)
t , y

(k)
t , w

(k)
t , h

(k)
t ) is defined by its top-left corner coordinates, width

and height, respectively. All units are in pixels. The set of all estimated trajectories is denoted as

O = {O(k)}k∈[1,...,N ], (2)
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where N is the number of all detected road users.

2.4.2 Ground Plane Coordinates from Image-based Measurements

The image-based bounding box trajectories O need to be projected into the WCS to obtain 2D road
user trajectories. For the projection, the widespread central perspective projection model (pinhole
camera) is assumed, which follows the collinearity principle, i.e. each real-world point is pro-
jected along a straight line through the projection center (the camera’s optical center) onto the image
plane [18]. Using both intrinsic and extrinsic calibration of the camera, a homography (projective
collineation) can be derived which allows mapping image coordinates onto a reference plane in the
world coordinate system. Since the object foot points can be easily estimated from the image-based
detection results, the world ground plane was chosen at z = 0 as reference plane for this projection.

In particular, given an object’s bounding box O
(k)
t , we leverage the scene geometry given by the

extrinsic calibration to compute the object’s orientation vector. This allows accurate location of the
foot (bottom) and head (top) points of the road user by intersecting the orientation vector with the
edges of the corresponding bounding box, as illustrated in the left and middle image of Figure 8, the
right image shows exemplary trajectories superimposed on a bird’s eye view image. To obtain the
corresponding location in OCS x

(k)
t = (x

(k)
t , y

(k)
t , 0) (measured in mm), the derived foot points are

projected onto the world ground plane, i.e. WCS representation and further transformed to the OCS,
as described in 2.3.2. Thus, the reconstructed trajectory signal x(k) of a road user k is

x(k) =
(
x
(k)
tinit

, . . . ,x
(k)
tend

)
. (3)

In order to represent the road user movements within openSCENARIO, the reconstructed trajec-
tory x(k) is further filtered as described in 2.4.4,

Figure 8. Multi-object multi-class tracking visualization with object orientation vector estimation
and road user’s foot point derivation. The colors of the bounding boxes and trajectories correspond
to the object’s instance ID. The right image shows exemplary trajectories after projecting image-
based localization results onto the world’s ground plane. The bird’s eye view image was obtained by
projecting the camera image pair onto the same plane.

2.4.3 View-consistent Trajectory IDs via Re-identification

The observation system uses two partially overlapping FOVs to cover a larger area of the road inter-
section. To obtain the most accurate localization results, tracking-by-detection is performed in each
FOV independently. For consistent trajectory IDs throughout the two-stream scene, a road user re-
identification approach is applied to establish correspondences between them in different FOVs. The
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method reuses the appearance features already extracted by the OSNet re-identification model from
the tracking step (as discussed in Section 2.4.1) which allows saving computational resources. For
each road user, a feature gallery for 60 video frames, which is 5 seconds by recording at 12 fps, is
kept and used in the following feature matching step. To predict an object transition between the
two FOVs, temporal and spatial information is used in the same coordinate system, i.e. per frame
coordinates projected onto the world ground plane (see Section 2.4.2). Thus, when a new road user
is detected in the current FOV, and its real-world trajectory lies in the area of the second FOV, the
feature galleries of these objects are matched across both FOVs and assigned a consistent trajectory
ID upon finding correspondences in the galleries.

2.4.4 Velocity Estimation through Trajectory Filtering

The output of the previous steps consists of time-dependent trajectory signal x(k) in the OCS reference
frame (see Equation (3)). Due to the nature of the tracking algorithm (see Section 2.4.1 and 2.4.2),
velocity information is not provided explicitly, and the position estimates are related to the bounding
box of the objects, which introduces additional measurement noise. In order to retrieve meaningful
trajectories and velocity profiles of the tracked road users, a constant acceleration Kalman filter [21]
followed by a Rauch-Tung-Striebel (RTS) smoother [33] is applied on the trajectory signal x(k). This
approach benefits from improving x(k), while yielding an estimate for the tracked object’s velocity
ẋ(k) and acceleration ẍ(k). The chosen Kalman filter models the X and Y -component of the object’s
motion independently using position, velocity and acceleration as state variables. The acceleration
may change between time steps, based on a discrete white noise model, where the amount of change
is controlled by the estimated maximum jerk (ȧ) of the tracked object. The attached RTS smoother
exploits the fact that x(k) is already known for the whole trajectory when running the filter operation.

When setting up the filter, it was assumed that the measurement noise and the covariance of the
position state variable can be estimated with the position accuracy of the tracking algorithm, ∆x.
Further it has been assumed that the maximum absolute values for velocity and acceleration, vmax

and amax respectively, can be used to estimate the covariances of the corresponding state variables as
σ2
v ≈ (vmax/3)

2 and σ2
a ≈ (amax/3)

2 [24].

2.5 Reconstruction Accuracy Estimation

For the accuracy evaluation of the trajectory reconstruction process, the georeferenced GT trajectories
x̂(k) were compared with the reconstructed x(k). As a pre-processing step, the measured data had to be
aligned and time-synchronized for the setups, i.e. the reconstructed trajectories, as described in Sec-
tion 2.4, had to be linearly interpolated, resulting in a sampling frequency of 100 Hz. Since each x̂(k)

is accompanied by its timestamps, they were used to extract the corresponding frames from the video
material. For time ranges in which the GT motion has been recorded in the vicinity of the selected in-
tersection, the video recordings where searched for a tracked object O(k)

t (vehicle, pedestrian), which
corresponds to the georeferenced GT motion data. To extract x(k), the trajectory reconstruction pro-
cess as described in Section 2.4 has been applied. At this point, it should be mentioned, that for the
recordings with the measurement trolley (see Section 2.2.2), two different signals have been retrieved.
Sequences, in which the trolley and operator moved in unison offered the opportunity to test the re-
construction process in the wild, i.e. on a pedestrian x(k) as compared to an idealized object x̃(k),
i.e. the center of the tracking tag. This setup is particularly helpful for investigating how bounding
box related effects affected the tracked trajectory of the pedestrian, since the tag is tracked with high
accuracy and its image position is clearly defined.

10



Additionally, x̃(k) was used to test and tune the performance of the Kalman Filter that was sub-
sequently used to smooth reconstructed trajectories and provided velocity estimates, as discussed in
Section 2.4.4.

2.6 Pedestrian-Vehicle Scenario Simulation using openPASS

The specifics are described in the following for simulating the observed scenarios in the simulation
platform openPASS [47, 9]. Originally, the term openPASS formed a backronym for ”Open Plat-
form for the Assessment of Safety Systems”. It has since been expanded beyond the scope of safety
alone, and extends to the assessment of any kind of ADAS and AD function, using the standards
OpenDRIVE, OpenSCENRIO and OpenSimulationInterface. In line with this, the simulation aims to
provide vehicle and pedestrian agents that are modelled through system definitions and follow model-
based design approaches. The agents are therefore composed by motion dynamics models and may
consist of interconnected subsystems, such as ADAS functions. openPASS requires a certain infor-
mation flow and thus files necessary to perform a simulation study. Besides meta information for the
simulation (provided in SimulationConfig) and the agent models (ProfilesCatalog, SystemConfigs),
which have to be passed, peculiarities of the scenario description and the properties of the pedestrian
and the vehicle agent should be summarized in short form.

Scenario Description using OpenSCENARIO The scenario file describes the traffic situation fol-
lowing the OpenSCENARIO standard [1]. The scenery used was modelled in Section 2.3 and was
incorporated into the scenario via its corresponding openDRIVE description. The storyboard, indi-
cating the interplay of road users and the temporal development of the scene has been modelled in
accordance to the openPASS PreCrash Matrix (PCM) use case. The behavior is therefore composed
as a FollowTrajectoryAction, which consists of the trajectory description, sampled with 100 Hz. The
same method of trajectory interpolation as described in 2.4 has been used. Furthermore, the scenario
file includes a link to a ProfilesCatalog, which describes the underlying algorithmic models of the
spawned road users.

Pedestrian Agent The pedestrian agent is relatively simple. Prescribed trajectories that are con-
tinuous in their velocities and accelerations are defined as a FollowTrajectoryAction in the Scenario
file. The internal implementation of a trajectory follower forces the pedestrian agent to move to the
defined position in time.

Vehicle Agent The vehicle agent is similar to the model used in [40]. The target trajectory is
described by the FollowTrajectoryAction, defined for each simulated agent in the storyboard of the
scenario file. This given target trajectory is passed to a route control algorithm, which controls brake,
throttle and steering signals based on the deviation between the actual and target state. This behavioral
model affects the dynamics of the two-track model and the dynamics of the chassis, which simulate
the suspension of the vehicle due to inertia forces.

3 RESULTS

The first the results of the described methodology are presented in the following. The main focus
is on the accuracy of the trajectory reconstruction process. Since this visual perception pipeline is
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significantly influenced by the MOT, its performance has been assessed separately. Further, the re-
constructed trajectories have been assessed as described in Section 2.5. This section is complemented
with first simulation results, which were generated by using the derived scenario in openPASS.

3.1 Multiple Object Tracking-by-Detection

Since MOT is a complex task consisting of detection, localization and association, multiple metrics
should be considered to evaluate the performance of a multi-class multi-object tracking-by-detection
approach. We employ the widely adopted multiple object tracking accuracy (MOTA) [3], identifi-
cation F1 score (IDF1) [37] and trajectory quality [25] measures. Since it has recently been shown
by [28] that these measures are often biased towards specific components of a tracking system (e.g.
CLEAR-MOT focuses on detection and localization, while IDF1 focuses on association), we addi-
tionally report the results in terms of higher order tracking accuracy (HOTA) [28], which explicitly
addresses these biases of existing measures.

The results of the quantitative multi-class multi-object tracking-by-detection evaluation are shown
in Table 1. The tracking performance for both pedestrian and vehicle classes achieves high MOTA
rates, i.e. 83.24% and 92.50%, respectively. Moreover, for the pedestrian class, which is the most
important class due to their high vulnerability, the IDF1 and HOTA scores are also at state-of-the-
art levels, i.e. 89.39% and 70.61%, respectively. The lower IDF1 score for the vehicle class can
be mostly attributed to identity switches at parking area (visible at the top border of the right FOV).
There, vehicle detections are significantly more unstable due to the high degree of occlusions, i.e. both
the traffic sign, as well as other parked vehicles occlude distant cars which leads to frequent detection
failures. Consequently, this causes identity switches for the occluded cars. As this only affects the
cars parked at the far end of the camera’s FOV, it does not impede the performance of our system to
extract trajectories of moving and interacting road users.

Object class GTdet TP↑
det FN↓

det FP↓
det IDF1↑ MOTA↑ IDsw↓ GTtraj MT↑

traj PT↑
traj ML↓

traj HOTA↑

Pedestrian 3634 3180 454 156 89.39% 83.24% 4 41 26 13 2 70.61%

Vehicle 30496 30098 398 1887 44.46% 92.50% 3 88 87 1 0 56.85%

Table 1. Quantitative results of the multiple class multiple object tracking-by-detection method on our
image data. GTdet, TPdet, FNdet and FPdet - the numbers of ground truth, true positive, false negative and false positive detections, respectively;
IDF1 - tracking Identification or association accuracy score; MOTA - multiple object tracking accuracy; IDsw - the number of trajectory ID switches;
GTtraj, MTtraj, PTtraj and MLtraj - the numbers of ground truth, mostly tracked, partly tracked and mostly lost trajectories, respectively; HOTA - higher
order tracking accuracy. ↑ and ↓ denote that higher/lower values correspond to better performance.

3.2 Reconstruction Accuracy

In general, it is hard to evaluate the similarity of two trajectories. One of the most commonly used
approaches is the calculation of spatial distances between temporal corresponding points, also referred
as lock-step Euclidean distance (LSED) Eu, as well as the calculation of the dynamic time warping
(DTW), which is well suited to compare paths [46]. Since the trajectories used for the accuracy
evaluation have different lengths, the mean µEu and µdtw as well as the standard deviation σEu and
σdtw over all considered point pairs have been used for comparison. Besides a path reconstruction,
it is essential to obtain accurate speed profiles of the road users. For the comparison of the speed
profiles resulting from the trajectories, the cross-correlation ρ

(k)
v̂,v between v̂(k) and v(k) was used and

an mean correlation µρ calculated.
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The deviation by means of the DTW, are promising and circumvent those effects by comparing
paths.

3.2.1 Optimum

The tracked tag positions of all measurement positions (see Section 2.2.2) were mapped into the
OCS separately for each FOV using the approach presented in Section 2.3.2 and compared against
the recorded GPS measurements (also mapped into the OCS). The resulting deviations in the XY -
plane of the OCS are plotted in Figures 9 and 10. For the left FOV, we were able to reconstruct the
tracked tag positions with a mean absolute error (MAE) of 0.2 m, a median deviation of 0.14 m and a
maximum absolute error of 0.63 m.

For the right FOV, we achieved a MAE of 0.17 m and a median deviation of 0.1 m. The max-
imum absolute error was higher with 0.95 m, but this can generally be attributed to outliers, since
for approximately 95 % of all measured positions, the absolute deviation is actually ≤ 0.3 m. These
outliers correspond to measurement positions that lay far from the camera and close to the edge of
the image (as shown in the right pane of Figure 10) where the lens distortion is highest, thus making
them especially susceptible for re-projection errors.

Figure 9. Reconstruction accuracy of the tag position overlaid on camera views. The left and right
images show the deviations between GPS measurements and the tracked tag position (transformed
via TW2OD) for the left and right FOV respectively.

3.2.2 Pedestrian

Reconstructed trajectories were compared against the recorded ground-truth trajectories for 25 shared
movement sequences of the measurement tag and trolley operator (pedestrian). It was found that the
measurement tag position was reconstructed with a mean LSED of 0.2 m, which was in line with
the optimal reconstruction accuracy of 0.17 m to 0.20 m that was established using static targets (see
Section 3.2.1). The positional accuracy of the operator trajectories, in contrast, was significantly
lower with an average LSED of 0.9 m and with maximum absolute errors reaching as high as 2.5 m
compared to 1.0 m for the tag trajectories. The poorer performance for the operator trajectory can be
explained to a great extent, as the effect of the distance between the operator and the measurement
tag, which introduces a systematic error that could not be corrected during the analysis. For the
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Figure 10. Reconstruction accuracy of tag position overlaid on road borders. The left and the right
images show the deviations between GPS measurements and the tracked tag position (transformed
via TW2OD) for left and right FOV respectively. The position of the intermediary coordinate system
is marked with a magenta cross.

comparison of velocities, the offset between operator and tag should have had less of an impact,
assuming that it stayed approximately constant. On examining the calculated velocity accuracies,
this has been the case: the LSED of the operator velocities was higher than that of the tag velocities,
0.27 m/s for operator versus 0.07 m/s for the tag, but the relative difference between these values was
smaller than between the corresponding positional LSEDs. This can also be seen in Table 2, which
summarizes the position and velocity accuracy statistics.

Figure 11 gives a qualitative comparison between tracked and reconstructed trajectories of refer-
ence tag and trolley operator for a selection of analyzed movement sequences. It can be seen that the
recorded operator trajectory was significantly noisier than the tag trajectory, underscoring the need
for Kalman filtering when confronted with realistic data. The Kalman filter was designed to filter out
the high-frequency noise in the pedestrian tracking data, which is most apparent in the trajectories
for sequences 10, 12, 23 and 24. This noise is generated by oscillations in the bounding box, and is
most likely caused by foot movement and the pedestrian’s legs being partially occluded by the mea-
surement trolley. As can be seen from the right side of Figure 11, the filter generally succeeded in
removing this type of noise.

Position Velocity
Data source µEu [m] Eumax [m] µEu [m/s] Eumax [m/s] µρ

Optimal (tag) 0.2 1.0 0.07 0.7 0.97
in the wild (pedestrian) 0.9 2.5 0.27 2.2 0.77

Table 2. Quantitative results of the pedestrian trajectory reconstruction accuracy. µEu - mean LSED, Eumax

- maxmium LSED, µρ - mean velocity profile correlation

3.2.3 Vehicle

A total of 18 reconstructed trajectories were compared with their georeferenced GT measurement.
The average LSED showed a reconstruction accuracy of 1.391 (± 0.77) m and the DTW 0.675 (±
0.51) m. Vehicle speed could be reconstructed with a MAE of 0.34 (± 0.38) m/s. Reconstructed and
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Figure 11. Qualitative comparison between reconstructed trajectories (red dashed lines) and geo-
referenced ground-truth data (blue) for selected movement intervals. Left: trajectories based on the
measurement tag. Right: trajectories of the person that operated the measurement trolley. The be-
ginning and end of all sequences is marked by star and circle symbols, respectively. Best viewed on
screen.

measured velocities showed a correlation of about 0.94 on average. The high deviation by means of
LSED can be reasoned by the determination of the vehicle’s representative point, which is a function
of the bounding box. Therefore a systematic error in the distance between the GPS measured point and
the reconstructed point effects the result. The deviation by means of DTW are however promising and
circumvent those effects by evaluating path similarity. Furthermore, these results have been divided
by means of the six different paths, which could possibly be taken by a vehicle on the basis of the
road layout. The obtained results per path are provided in Table 3, selected trajectories per path are
shown in Figure 12.

Scenario Nr Nr Points µEu [m] σEu[m] µdtw [m] σdtw[m] Eumax[m] µρ

1-2 5 4944 1.406 0.518 0.54 0.414 2.425 0.974
1-3 4 4805 1.324 1.013 0.894 0.521 3.203 0.945
2-1 4 3335 1.079 0.475 0.383 0.305 2.378 0.884
2-3 2 1080 1.252 0.309 0.57 0.379 1.543 0.939
3-1 3 3040 1.911 0.799 0.841 0.627 3.289 0.941
3-2 3 1265 1.284 0.688 0.837 0.463 2.792 0.967
all 21 18469 1.391 0.767 0.675 0.511 3.289 0.942

Table 3. Quantitative results of the vehicle trajectory reconstruction accuracy. Results have been
subdivided into different scenarios, based on the paths. µEu - Mean LSED, σEu - standard deviation of LSED, µdtw -
Mean DTW, σdtw - standard deviation of DTW DTWmax - Maximum DTW, µρ - mean velocity profile correlation

3.3 Simulating a Pedestrian-Vehicle Scenario

The openSCENARIO files, resulting from the reconstruction of the dedicated test drives were used as
input for the simulation environment openPASS. An example for the simulated scenario is shown in
Figure 13.
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Figure 12. Qualitative comparison between the reconstructed trajectories (dashed line) and the geo-
referenced GT motion data (solid lines). The left subfigure shows vehicle trajectories starting from
road section 1, the middle from road section 2, and the right from road section 3, respectively.

4 DISCUSSION

In this paper a workflow has been established to extract pedestrian-vehicle scenarios from camera-
based observation system, suitable to the virtual assessment of ADAS.

4.1 Traffic Observation and Visual Perception Pipeline

Due to the internal service roads at the observation point chosen in this study there are frequent in-
teractions between vehicles and pedestrians. However, at this particular point, accident with personal
injuries have not been recorded in recent years, which can be explained mainly by the speed limit.
The extension to observation points in public space as in [50, 4], would complement the scenario
catalog as it results in other scenario configurations. Recordings of road sections with a higher speed
limit, i.e. 50 km/h, regulated and unregulated crosswalks, or interactions with public transportation
would be of additional value. In order to further quantify scenario relevance, it would be necessary
to evaluate complexity and criticality based on common metrics such as traffic densities, or time to
collision (TTC). Further observation points would be needed to underpin the results and to better
understand intersection specific differences. The deliberate camera placement and viewpoint choices
differs significantly from previous studies [49, 50, 4], and allows a higher level of detail which is
useful to further increase the realism of the scenario description, especially with respect to road user
interactions. In addition to the approach shown for to extracting road user trajectories automatically,
the close-up observations will allow future work to investigate pedestrian attributes and even include
realistic pedestrian postures [39] in simulation environments such as Car Learning to Act (CARLA)
[10].

A realistic assessment of integrated safety systems should take into account the initial posture
of a vulnerable road user (VRU) prior to a crash, as it can influence the accident kinematics and
the resulting crash severities. Having the capability of reconstructing realistic postures of VRUs in
critical situations, as described in [39, 26], and transferring them into a simulation environment could
therefore enable more realistic virtual testing of integrated safety systems.

Furthermore, it should be noted that the presented trajectory reconstruction process could be ap-
plied to other observation points with relative ease. The adaptions required for this mainly concern
two parts of the visual perception pipeline, namely tracking and ground plane projection and there in
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Figure 13. Visualisation of the scenario simulated in openPASS, alongside the corresponding video
frames of the observation system, including the results of the MOT. Frames where taken at simulation
time 0, 2, 4 and 6 seconds.

particular, the coordinate system alignment. The MOT algorithms can be adapted to other observa-
tion points, by adding additional training data and for the coordinate system alignment only one pair
of corresponding GPS measurement and tag orientation/position measurement would be required to
calculate the transformation TW2OD.
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4.2 Trajectory Reconstruction Accuracy

The performance of the trajectory reconstruction via perception pipeline, described in Section 2.4
depends on multiple factors. A central aspect of this is the correct operation of the MOT. The MOT
performance shown in this paper is on state-of-the-art level, which could be quantified with common
performance metrics. For the creation of a scenario catalog, the remaining misclassifications and ID
switches play a minor role since they could be compensated in a post-processing step. A possible
approach would be additional temporal and spatial sanity checks, e.g. checking if the start and end
point of the trajectory are outside the observed area defined in Section 3.2.3. Overall, it can be
assumed that the trajectories filtered in this way represent only a small subset of all reconstructed
trajectories, and do not have a greater impact on the overall scenario distribution at this intersection.
As expected, the highest reconstruction accuracy is reached near the center of each FOV. Furthermore,
the road surface at the observation location in our study was highly uneven and thus, often violates the
underlying assumptions of the central perspective projection model that the ground plane should be
located at z = 0 for all locations in the observed image. The reconstruction accuracy is thus expected
to improve notably when deployed at other observation points, where this assumption on the ground
plane holds.

The investigation on vehicle trajectory accuracy estimation as presented in Section 3.2.3 shows a
systematic deviation in the reconstructed path. The path reconstruction might be further improved by
taking the distance to the image center into account, as well as the road network information, i.e. lane
types, dedicated for specific road users. Apart from the general limits of reconstruction accuracy, as
determined in Section 3.2.1, the representative vehicle point used for ground plane projection could
possibly be enhanced, as shown by [44]. In our case, the representative point is a function of the
bounding box size and is therefore of limited accuracy in the area where the vehicle is only partly
visible, i.e. in the overlap of the cameras’ FOVs. This transition affects both the reconstruction of
the path as well as the reconstructed velocity. Since the path is currently reconstructed by spline
interpolation, targeted smoothing by weighting the points with respect to the their WCS location
could possibly enhance the results. For the velocity reconstruction, the effect is compensated by a
mean filter, which could further be improved by using enhanced sensor fusion techniques.

Overall, the reconstructed trajectories were sufficiently accurate to permit realistic modelling as
demonstrated by the low deviations in the specifically conducted accuracy estimation measurements
and in the simulation.

4.3 Simulation

At the current stage only single scenarios were re-simulated. Nevertheless, the reconstructed trajecto-
ries could be lift the concrete scenario description to logical actions as shown in [35]. Logical scenar-
ios, which are capable to model the entire traffic, can then be used for scenario-based assessment of
ADAS, via stochastic simulations [40]. In general, traffic simulations include the dynamics and be-
havior of traffic participants (vehicles, pedestrians, etc.), the road network, environmental conditions
(lighting, weather) and sensors like cameras, LiDARs, and Radio Detection and Ranging (Radars)
[31]. The vehicle’s sensors and the related perception algorithms for object detection and tracking
provide essential input data for the ADAS that is being tested. Hence, modeling sensor capabilities
and deficiencies with sufficient accuracy is thus a matter of the utmost importance for obtaining real-
istic simulation results. Different fidelity levels are required depending on which ADAS development
process phase the sensor model is applied to. In early stages, where the focus lies on control or plan-
ning algorithm design, it is common to use models which provide object list outputs (see e.g. [27]),
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i.e. sensor and perception are encapsulated in one model. Later on, when also the in-vehicle percep-
tion software is tested, sensor models which provide raw data output (e.g. LiDAR point clouds [17])
are applied. An overview of various sensor model types and their underlying principles is given in
[41].

5 CONCLUSIONS

The exemplary application of a newly developed workflow to bridge the gap between observed real-
world pedestrian scenarios and scenarios in traffic simulations used for the assessment of active pedes-
trian protection systems was showcased within this paper. It was possible to simulate the observed
scenarios with the simulation framework openPASS. The developed method and recorded data sets
show great potential for future work and will support the development of more realistic virtual pedes-
trian scenarios and therefore a more realistic effectiveness assessment of ADAS in the future.
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AND BRINGMANN, O. Identifying scenarios in field data to enable validation of highly auto-
mated driving systems. In Proceedings of the 8th International Conference on Vehicle Technol-
ogy and Intelligent Transport Systems (2022), SCITEPRESS - Science and Technology Publi-
cations.

21



[36] RICHARDSON, A., STROM, J., AND OLSON, E. AprilCal: Assisted and repeatable camera
calibration. In IROS (2013).

[37] RISTANI, E., SOLERA, F., ZOU, R., CUCCHIARA, R., AND TOMASI, C. Performance Mea-
sures and a Dataset for Multi-Target, Multi-Camera Tracking. In ECCV Workshop (2016).
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