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ABSTRACT  

Scenario-based testing is a pillar of assessing the effectiveness of automated driving systems (ADSs).  
For data-driven scenario-based testing, representative traffic scenarios need to describe real road traffic 
situations in compressed form and, as such, cover normal driving along with critical and accident situations 
originating from different data sources. Nevertheless, in the choice of data sources, a conflict often arises 
between sample quality and depth of information. Police accident data (PD) covering accident situations, for 
example, represent a full survey and thus have high sample quality but low depth of information. However, for 
local video-based traffic observation (VO) data using drones and covering normal driving and critical situations, 
the opposite is true. Only the fusion of both sources of data using statistical matching can yield a representative, 
meaningful database able to generate representative test scenarios. For successful fusion, which requires as many 
relevant, shared features in both data sources as possible, the following question arises: How can VO data be 
collected by drones and analysed to create the maximum number of relevant, shared features with PD?  

To answer that question, we used the Find–Unify–Synthesise–Evaluation (FUSE) for Representativity 
(FUSE4Rep) process model. We applied the first (“Find”) and second (“Unify”) step of this model to VO data 
and conducted drone-based VOs at two intersections in Dresden, Germany, to verify our results. We observed a 
three-way and a four-way intersection, both without traffic signals, for more than 27 h, following a fixed sample 
plan. To generate as many relevant information as possible, the drone pilots collected 122 variables for each 
observation (which we published in the ListDB Codebook) and the behavioural errors of road users, among other 
information. Next, we analysed the videos for traffic conflicts, which we classified according to the German 
accident type catalogue and matched with complementary information collected by the drone pilots. Last, we 
assessed the crash risk for the detected traffic conflicts using generalised extreme value (GEV) modelling. For 
example, accident type 211 was predicted as happening 1.3 times per year at the observed four-way intersection.  

The process ultimately facilitated the preparation of VO data for fusion with PD. The orientation towards traffic 
conflicts, the matched behavioural errors and the estimated GEV allowed creating accident-relevant scenarios. 
Thus, the model applied to VO data marks an important step towards realising a representative test scenario 
database and, in turn, safe ADSs. 
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INTRODUCTION  

Automated driving systems (ADSs), as an increasingly common part of road traffic today (Hohm, 2022), are 
designed to reduce the number of accidents and fatalities on the road and, as such, to play a significant role in 
making road traffic safer. To that end, ADSs first have to prove that they can drive more safely than attentive 
human drivers (Bergmann, 2022). One way to test ADSs for the safety of their intended functionality and thus 
safe driving is scenario-based testing, which entails using scenarios derived from real-world data (Nalic et al., 
2020), including naturalistic driving studies, police accident data (PD) and video-based traffic observations 
(VOs) using drones (Bock et al., 2019; Nalic et al., 2020). At best, real-world data sources cover all road traffic 
in the ADSs’ operational design domain (ODD) and thus represent the ODD of road traffic (Lehmann et al., 
2019). Ideally, those data sources should also have the same depth of information needed to derive test scenarios.  

However, the continuous collection of real-world data in all ODDs in which ADS are slated to operate is cost-
intensive and technically complex. Beyond that, real-world data sources vary in the content of their information. 
Although PD represent entire regions or countries, they encompass information accessible only to police 
officers. Given that restriction, dynamic information about parties involved in accidents is not collected. By 
contrast, VOs afford a microscopic perspective on the dynamic behaviour of road users but are often spatially 
and temporally limited available.  

In response to those setbacks, Bäumler and Prokop (2022) have proposed creating representative, information-
rich databases for deriving test scenarios by fusing various real-world data sources. For instance, PD from 
Germany can be fused with data from local VOs, assuming that they belong to one unobserved, superordinate 
population (Bäumler et al., 2020). In that case, dynamic information about road users (e.g. trajectory, speed and 
acceleration) can be assigned to the corresponding PD.  

Given a common, unobserved, superordinate population, the quality of fusing two data sources depends 
primarily on the overlapping information between the sources—for instance, in the form of common variables 
(D’Orazio, Di Zio and Scanu, 2006). The more variables that coincide, the higher the probability of achieving 
good data fusion results (Rässler, 2002; D’Orazio, Di Zio and Scanu, 2006). For that reason, data collection 
should consider unifying information between the sources to be fused. However, regarding the fusion of, for 
example, German PD and VO data, changes in the nationwide standardised data collected by police are 
achievable only in the long term. Thus, VOs should be geared towards collecting information and/or variables 
comparable to PD. To that end, with reference to a real-world case, this paper answers a specific research 
question: How can VO data be collected by drones and analysed to create the maximum number of relevant, 
shared features with PD?  

To answer this question, we introduce and apply the Find–Unify–Synthesise–Evaluation (FUSE) for 
Representativity (FUSE4Rep) process model (Bäumler and Prokop, 2022) to collect and analyse VO data for 
subsequent data fusion. 

In what follows, we first introduce the general idea of the FUSE4Rep process model and the resulting 
requirements for collecting VO data using drones. Next, we demonstrate how VOs are collected using drones 
and a mobile app that we developed, after which we analyse the data collected and derive additional common 
variables concerning PD. We close the paper with a discussion of our results and directions for future research.  
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BACKGROUND 

The FUSE4Rep model (see Figure 1), developed by Bäumler and Prokop (2022), proposes a holistic approach 
for fusing PD with VO data. In contrast to alternative approaches (Erbsmehl et al., 2017; Erbsmehl, Lich and 
Mallada, 2019; Krause, 2019), the FUSE4Rep model explicitly seeks to maximise overlapping information 
between both sources of data to be fused and, in the process, to ensure valid fusion using statistical procedures, 
specifically statistical matching. As shown in Figure 1, the FUSE4Rep model starts by determining the shared, 
unobserved, superordinate population between two data sources as well as identifying potential common 
information that can be collected and/or analysed in both sources. Second, the common information identified 
needs to be mined and unified to be comparable. Third, both prepared data sets are synthesised using statistical 
matching, a process detailed by Bäumler et al. (2020). Last, data fusion is evaluated using statistical indicators 
and, if available, real-world data.   

In light of our research question, this paper focuses on the first and second step of the FUSE4Rep model: “Find” 
and “Unify”. Thus, possible information shared by PD and VO data is identified and subsequently unified. In the 
following, we use the terms crash and accident synonymously.   
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Figure 1. The four steps of the FUSE4Rep process model.



METHOD 

This section describes our VOs, conducted to collect data to be fused with PD, and their subsequent analysis. 
Figure 2 shows the specific steps of the FUSE4Rep process model applied in this paper. In doing so, it 
anticipates that possible traffic conflicts, in the form of three-digit accident types (3AT), belong to the 
overlapping information within VOs and PD and should thus be collected and analysed.  

Step 1: Find 
In this subsection, we introduce all of the necessary steps for collecting VO data within the first step, “Find”, of 
the FUSE4Rep process model (see Figure 2).   

Information to be collected  
To ensure that the VO data collected can be fused with PD, they need to fulfil the following four 
requirements:  

1. Coverage of information collected by the police and thus published in national statistics (Destatis, 
2021), because the PD to be fused are German;  

2. Consideration of the traffic safety causality model (see Figure 3; Tarko, 2019; Orsini et al., 2021), 
which represents the emergence of crashes;  

3. Consideration of the six-layer model for scenario description (Scholtes et al., 2021), because the 
fused data set should ultimately support the generation of test scenarios; and  

4. Information collected by one drone pilot equipped with corresponding measurement instruments to 
keep personnel costs low. 

Based on the four requirements, we created a codebook containing 122 different variables to be identified 
during and after a VO. The ListDB Codebook, published as part of the “Leverage Information on Street 
Traffic (ListDB)” project, has been made publicly available.   1

 The ListDB Codebook can be accessed at https://w3id.org/listdb/. 1
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Figure 2. The FUSE4Rep process model applied to VO data.

https://w3id.org/listdb/


According to the adapted causality model of traffic conflicts and crashes displayed in Figure 3, every crash 
is preceded by a traffic conflict. However, because not every traffic conflict necessarily leads to a crash, 
every accident recorded by the police is based on a traffic conflict, which in Germany can be described with 
the help of the 3AT classification (Ortlepp and Butterwegge, 2016; Destatis, 2021). Specifically, a traffic 
conflict represented as a 3AT describes the simultaneous approach of road users to a point on the road where 
they may collide (Ortlepp and Butterwegge, 2016). At the same time, traffic conflicts can be recorded and 
video-based analysed  (Polders and Brijs, 2018). Therefore, a possible link between PD and VO data lies in 
the uniform description of traffic conflicts in both data sources according to the 3AT classification. The 
causality model (Figure 3, left) also shows that a set of different factors (e.g. road- and weather-related 
factors) can influence traffic conflicts and, in turn, crashes (Tarko, 2020). Thus, those factors should also 
serve as links between PD and VO. In that context, the six-layer model (6LM) for describing test scenarios 
for assessing ADSs already covers all factors except human factors. Because the 6LM was taken into 
account in the design of the ListDB Codebook, we here detail the collection and presentation of traffic 
conflicts in connection with human factors in the Codebook and refer to the detailed online ListDB 
Codebook for information from the other layers and factors. 

 

In German PD, human factors primarily consist of drivers’ behavioural errors, which can be assigned to 
different parties involved in accidents —namely, the primary contributor to the accident and other parties 
(Destatis, 2021). To each party, the police can assign up to three behavioural errors, including errors in 
observing the right of way, choice of speed or overtaking (Destatis, 2021). Therefore, it makes sense to 
adopt the police’s categories of behavioural errors for VO data and assign them to observed traffic conflicts. 
However, the following challenges arise as a consequence:  

1. Limited detection of traffic conflicts: Reliably detecting traffic conflicts in the recorded VO data 
needs to be possible. Test observations have shown that parking crashes, for example, are difficult 
to detect in VOs from the height at which drones fly (ca. 80 m) due to constraints in resolution and 
object detection. Traffic conflicts caused by unusual events, including ambulances with active blue 
lights, are also challenging to detect.  

2. Lack of ego-perspective: Due to the missing ego-perspective of road users involved in traffic 
conflicts, the causes of behavioural errors, including visual obstacles, are challenging to detect and 
assess. Road users may also agree on the right of way at intersections, meaning that a seeming 
right-of-way error, especially when seen from the drone’s bird’s-eye view, may not in fact be one.  

3. Lack of personal information: Drivers’ behavioural errors, which affect drivers as people (e.g. 
excessive alcohol consumption and fatigue) are not detectable from the outside.   

The first two challenges require a deep understanding of the traffic situation in question and its context, 
which cannot be achieved by analysing only the video data collected afterwards. However, the drone pilot 
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Figure 3. Causality model of traffic conflicts and crashes with assigned scenario layers, adapted from Tarko (2019)  
and Orsini et al. (2021).



monitoring traffic situations during VOs can help to overcome those challenges. Therefore, we propose 
including the drone pilot in the detection of traffic conflicts and behavioural errors and linking it to real-
time, drone-based video recording. That approach combines conflict techniques relying on human experts, 
so to speak, including parts of the “Swedish Traffic Conflict Technique” (Polders and Brijs, 2018), with 
automatic video analysis afterwards.  

Nevertheless, because it is also difficult for drone pilots to recognise traffic conflicts, we introduced the 
concept of point of interest (POI), which generally precedes a potential traffic conflict (see Figure 3) and is 
easier for drone pilots to detect. As detailed in Table 1 in the Appendix, we differentiate four types of POIs:  

1. Single (1×): One road user shows unusual behaviour or behavioural errors.  

2. Interaction (8×): At least one road user reacts or should react to another road user. Interactions 
include the type of road user for interactions between a maximum of two users. Interactions with 
more than two users are multi-object interactions that do not specify the types of users. 

3. Predefined event (5×): Predefined events are special and rare events (e.g. ambulances with active 
blue lights or slow-moving obstacles such as sweepers).  

4. Other (1×): Everything that does not fit into the other three types is categorised as “Other”.  

For each POI that the drone pilot captures, three different behavioural errors can also be captured, along 
with one cause of the behavioural error (see Figure 4). Next, to overcome the third challenge, because 
the drone pilot can capture only behavioural errors that are visible to them, we have reduced possible 
behavioural errors in the PD (Destatis, 2021) to 11 major categories, including “PriorityError”, 
“RoadUseError” and “DistanceError” (see Appendix, Table 5). The causes of such errors can be 
obstacles distracting the driver’s sight (i.e. “VisualCause”), technical issues (i.e. “TechnicalCause”) or 
weather-related issues (i.e. “EnvironmentalCause”).  

In general, every VO can consist of several drone flights, with the battery’s capacity generally limiting 
flight times. There are also static and time-based variables for each flight. On the one hand, static 
variables (e.g. location, weather and measurement equipment) are considered to have stationary status 
during flights. For example, if the weather changes during a flight, then a new flight has to be started 
and the variable adjusted accordingly. As for time-based variables, on the other hand, to ensure the 
subsequent matching of POIs detected by a drone pilot with the traffic conflicts detected in subsequent 
video analysis, the timestamp of each detected POI is (manually) synchronised with that of the VO at 
the beginning of the recording (see Figure 4). Thus, POIs are treated as time-based variables, as shown 
in Figure 4.  

 Bäumler  6

Figure 4. Relationships between sample plan, VOs, flights and identified variables.



Data collection tools  
Aside from a video drone and thermometers,  the essential survey instrument is an Android smartphone 2

with the ListDB app, which the drone pilot can use to record all static and time-based variables defined 
in the ListDB Codebook. Figure 5 (left) illustrates the POI screen visible to the drone pilot during 
video-recording. As shown, the drone pilot can collect all POIs displayed on the screen by clicking on 
the corresponding buttons. Whereas a short click records a POI and the corresponding timestamp (see 
Figure 5, bottom), a long click opens another screen showing all possible behavioural errors and causes. 
After selecting the road user showing the behavioural error, the drone pilot can select up to three errors 
and one cause. Upon completion, the screen closes, and the data are saved together with the POI and the 
timestamp.  

 

 The video drone used was the DJI Mini 2, which offers video recording with a resolution of 3.840 × 2.160 2

pixels and a sampling rate of 29.97 frames per second.  
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Figure 5. ListDB App v0.3.2.4 – Screenshot of the POI and behavioural error screens. The table illustrates the format in 
which the information is stored. 



Population to be observed  
A shared, unobserved, superordinate population is a prerequisite for successfully fusing PD and VO data. 
For that reason, VOs have to target a population intersecting with the PD. Generally, a population and 
samples drawn from it should be described factually, spatially and temporally (Gabler and Häder, 2015; 
Lehmann et al., 2019). From a factual perspective, the common population can be formed by all traffic 
conflicts at the examined locations, in which case traffic conflicts can be regarded as the binding element 
between PD and VOs (see Figure 3). Based on the factual component of the population, selecting locations 
where traffic conflicts are known to occur makes sense as a means to determine the spatial component of the 
population. Indeed, the conflicts need to have occurred in locations where accidents have already happened. 
Thus, we selected two intersections in Dresden, Germany, for VO, where five relevant crashes occurred 
between 1 January 2005 and 31 December 2021: a three-way intersection called “Tharandter Straße/
Frankenbergstraße” and a four-way intersection called “Dorfhainer Straße/Kohlenstraße” (see Figure 7).  3

Both intersections are located within the city and therefore have a speed limit of 50 km/h on the priority 
road. From the temporal perspective, it would make sense to have a permanent VO in place to record all 
traffic conflicts at the selected intersections. However, because the availability and number of survey 
personnel, as well as the research’s budget, did not allow such monitoring, we defined a 3-month period in 
which the VO had to occur. As shown in Figure 6, June, July and August constituted the period chosen for 
VOs, as they are relatively accident-prone months in Dresden from 2017 to 2021 that usually have good 
weather conditions. Statistics of traffic accidents in Dresden (Figure 6) also illustrate that the occurrence of 
accidents does not depend on the day of the week; thus, all weekdays can be treated equally in the VO, 
though the weekend has to be excluded due to the limited availability of staff. Regarding the exact recording 
times, the following boundary conditions were used to confine continuous VO during all weekdays in the 
three selected months: 

1. Daylight recording: Video recordings at night are impossible with the drones used.  

2. Good weather conditions: The drones cannot fly in strong winds (>21 km/h), rain or snow. 

3. Limited flight time: The average drone flight time is 20–25 min per battery charge. With the 
equipment available, about 90 min of recording at a time can be achieved.  

4. Limited access: The responsible air traffic control authority has to inspect and approve each flight. 

5. Limited personnel budget: The weekly working time of the two employed drone pilots cannot 
exceed nine hours incl. arrival and departure as well as data transfer.  

Thus, it is necessary to develop a sampling plan to cover the targeted population, one able to ensure that 
every traffic conflict has the same odds of being considered in the sample and thus guarantee the random 
selection of traffic conflicts (Bischoff, 1995; Pfeiffer, 2006; Lehmann et al., 2019). The requirements for the 
sampling plan were therefore: 

1. Fixed time slots: Fixed time slots have to be considered for recording and covering accident-prone 
daylight hours. Each time slot can last 90 min maximum.  

2. Equal distribution of time slots: Each time slot has to be observed once per month at each 
intersection. All time slots have to be observed the same number of times. 

3. Equal distribution of weekdays: The time slots have to be evenly distributed across the 
weekdays. A time slot may only be observed again on the same day of the week when the other 
weekdays have already been fulfilled.  

4. Flexibility: The drone pilot has to be free to choose the day of surveying with the given sampling 
requirements, because the weather conditions have to be suitable, and the flight permit has to be 
granted.  

After analysing the statistics of accidents by hour of occurrence (see Figure 6), we defined four 90-min time 
slots distributed over the course of a day with daylight as follows:  

1. Time slot 1: 7:30 a.m. to 9:00 a.m. 

2. Time slot 2: 10:00 a.m. to 11:30 a.m. 

3. Time slot 3: 1:00 p.m. to 2:30 p.m. 

 In-house accident data begin on 1 January 2005. Accidents had to involve two cars, not involve a party under 3

the influence of drugs or alcohol, not involve a trailer and be of accident type 2 (turning), 3 (turning in or 
crossing), or 6 (longitudinal traffic). 
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4. Time slot 4: 3:30 p.m. to 5:00 p.m. 

 

Taken together, those boundary conditions and the derived sampling plan slightly changed the target 
population compared with the desired one (see Table 1). The most significant deviation was that the 
actual targeted population represented only traffic conflicts in good weather during daylight hours and 
the defined time slots.  

Table 1.  
Comparison of the desired and real target population for VOs. 

Theoretically possible conflict situations 
The FUSE4Rep process model will be applied to generate test scenarios for car specific ADSs in the first 
stage (Bäumler and Prokop, 2022). However, because subsequent video analysis cannot be used to mine 
pedestrian and bicycle trajectories reliably, we have focused on detecting traffic conflicts between two cars. 
At the same time, because the traffic conflicts should affect ADSs in their ODDs, we have not considered 
traffic conflicts involving only one road user—for example, veering off the road to the right due to the 
driver’s carelessness. We have also not considered parking and animal-related traffic conflicts. Figure 7 
illustrates the remaining 3ATs that can theoretically occur at the observed intersections, all 27 of which 
represent one of four accident types—(2) turning, (3) turning in or crossing, (6) longitudinal traffic, and (7) 
other (Ortlepp and Butterwegge, 2016)—defined as follows:  

Factual Spatial Temporal

Desired target population
All traffic conflicts in any 
weather condition, 
regardless of daylight

Dresden, Tharandter 
Straße/Frankenbergstraße 
 
Dresden, Dorfhainer 
Straße/Kohlenstraße

Total period from 1 
June to 31 August 2022

Actual target population
Traffic conflicts in good 
weather conditions during 
daylight hours

Within the four time 
slots defined, from 1 
June to 31 August 2022
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Figure 6. Road traffic accidents in Dresden, 2017–2021. All crashes involved no more than two parties.



2. Turning: Conflicts between a road user turning and another road user coming from the same or 
opposite direction;  

3. Turning in or crossing: Conflicts between a road user who is turning or crossing but obliged to 
wait for another road user with the right of way;  

6. Longitudinal traffic: Conflicts between road users moving in the same or opposite direction; and  

7. Other: Conflicts that cannot be classified into any other category.  

Figure 7 also displays traffic conflicts that do not apply to the three-way intersection observed—namely, the 
blue-coloured traffic conflicts 215, 301, 321, 602, 612 and 651—and that, of the five crashes observed at 
either intersection, only the 3ATs 201, 211, 302 and 601 were represented.  
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Figure 7. Intersections observed from a height of approximately 80 m with theoretically possible and implemented three-
digit accident types.



Step 2: Unify  

In what follows, we introduce all steps necessary for analysing VO data in the second step, “Unify”, of the 
FUSE4Rep process model (see Figure 2).   

Trajectory mining  
Our drone-based observations each delivered a video file, from which certain information about the dynamic 
behaviour and properties of the road users and their interactions has to be extracted. Such information 
encompasses: 

-  Properties of road users 

o Object type (i.e. car, van, truck, biker, cyclist and pedestrian) 

o (Transit) manoeuvres (i.e. turn right, turn left and go straight) 

o Kinematics (i.e. velocity, acceleration, location and manoeuvre-specific development over 
time)  

- Interactions with other road users 

o Surrogate safety measures (SSM), including time to collision (TTC; Hayward, 1972), and 
post-encroachment time (PET; Allen, Shin and Cooper, 1978) 

Extracting that information from the video files requires the steps shown in Figure 8, all adapted from Khan 
et al. (2017). In preprocessing, all unnecessary parts of the recording (e.g. flight start) are removed, 
followed by image rectification required by the non-ideal parameters of the camera lens.  

 

Figure 8. Steps of information extraction, adapted from Khan et al. (2017). 

Before being analysed, the recordings have to be stabilised. When in operation, the drones are exposed 
to external influences from the wind that, despite each drone’s internal control strategy, cause unwanted 
movements and thus changes in the recording angle relative to the ground (see Figure 9). For example, 
the detected vehicle in the red box in Figure 9 would be repositioned on the sensor due to such 
movements, which would give it a velocity ( ) and acceleration ( ) during detection that misrepresent 
reality. To overcome those movements, all video frames are mapped to a so-called base frame at the 
beginning of each recording. Once the recordings have been stabilised, the relationship between each 

v a
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drone’s coordinate system ( , see Figure 9) and a geodetic reference system—for example, 
WGS84 (United States - Defense Mapping Agency, 1987)—has to be established in order to be able to 
convert the kinematic parameters from pixel to metric units (Hackeloeer et al., 2014). Next, the video 
data are prepared to allow the extraction of the required information. During detection, all objects of 
interest in the frames have to be detected so that the information between the frames can subsequently 
be merged into the tracking part. Correct detection is the only way to ensure that objects of interest are 
always clearly identifiable over time and to extract the kinematic parameters correctly. Last, in 
trajectory management, all required data about drivers’ behaviour (e.g. manoeuvres) are derived and 
simple conflict situations measures (e.g. TTC) calculated. 

 

Figure 9. Drone movement due to external influences. 

In video analysis, a wide variety of algorithms are needed to perform individual tasks. To that end, and 
to respond to shifting insights and requirements, a custom tool called “track in drone view” (tidv) has 
been developed, namely on a microkernel architecture (Richards and Ford, 2020). By outsourcing the 
individual tasks (e.g. keypoint detection as part of stabilisation) to plug-ins, different algorithms can be 
used, and the functionalities can be easily extended. The structure of tidv is outlined in Figure 10.  

 

Figure 10. Track in drone view structure (tidv) and plug-in structure. 

The core of tidv completely takes over the control and monitoring of the workflow processes. For its 
part, the workflow is defined via a configuration file written in YAML (Ben-Kiki, Evans and Ingerson, 

ximage, yimage
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2021) that can be created manually by the user or with the help of a graphical user interface. With 
reference to the processing steps, the processing pipeline is checked for consistency by the core before 
the plug-in’s execution. Each plug-in follows a fixed structure (see Figure 10 left side), in which the 
associated domain is first defined, which determines the data interfaces because the data input and 
output formats are defined for each domain within tidv. A plug-in’s five defined methods to be 
implemented are test, set-up, run, clean-up and teardown. First, test involves checking the behaviour 
and presence of the necessary data before the setup’s execution. Second, set-up involves preparing the 
run method for its execution; for example, the necessary neural network weights have to be loaded such 
that the trained network is available. Third, run, occurring at the core of the plug-in, performs the task, 
after which clean-up involves eliminating data that are no longer needed. Last, teardown involves 
terminating the pipeline if an unexpected error occurs. In all, the plug-in’s structure allows performing a 
modular, continuously expandable analysis of traffic observations using tidv. 

Because the implementation of the plug-ins is beyond this paper’s focus, we discuss only the two plug-
ins that are essential in our work: one for recognising road users’ manoeuvres, the other for calculating 
TTC. First, for manoeuvre recognition, the user defines gates on the base frame of the stabilised video 
(i.e. reference mapping frame for stabilisation), as shown in Figure 11, where white lines indicate the 
start and end of the junction arm and the black lines the start and end of the central intersection area. 
Thus, and as shown, the intersection is divided into respective arms and a central area. The start and end 
points of the trajectories in the defined areas can be used to determine the manoeuvre performed by the 
road user (i.e. turning right or left or driving straight), which is connected with the individual analysis of 
the dynamics and heading of the road users performed to extract manoeuvres inside the specified areas. 
By comparing the position within the areas, the current state of the intersection can also be determined 
(e.g. access to or departure from the intersection or passage of the central area).  

 

Figure 11. Analysis of a road user’s manoeuvre. 

To calculate TTC, the vehicles’ geometries are first estimated entirely because the YOLOv4 detector 
(Bochkovskiy, Wang and Liao, 2020) uses only axis-aligned bounding boxes as outputs (“red box 
framing the vehicle in Figure 11”). The minimum size of the bounding box can be determined by 
rotating the image to estimate the size of the road users. The TTC for conflict situations, in which one 
car follows another car (i.e. situations corresponds to 3AT 601) can be calculated with Equation 1: 

(1)T TCi(t) = (Xf (t) − Xl) − Sf

vf (t) − vl(t)
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in which X is the vehicle position of the following ( ) or leading vehicle ( ) and  is the velocity of the 
vehicle and  the vehicle’s length (Wang et al., 2021).  

By contrast, PET is calculated to determine the time elapsed between one road user leaving the potential 
collision zone ( ) and another road user entering it ( ). Following Allen, Shin and Cooper (1978), PET 
is defined as shown in Equation 2: 

Last, as mentioned, processing a large amount of data with tidv was only partly possible owing to the 
hardware’s limited capacity. Thus, commercial provider DataFromSky (DFS) supported video analysis.  4

Although we assumed that DFS’s video-processing method was similar to our developed procedure, in 
the data obtained using DFS, TTC and PET had to be calculated using estimated vehicle dimensions 
(i.e. width and length).  

Determining accident type  
We next analysed all four 3ATs that resulted in at least one crash between 2005 and 2021 (see Figure 7). 
Beyond that, we selected 12 additional 3ATs, also listed in Figure 7, to be identified in the VO data. 
However, due to time constraints, we did not analyse the 12 other theoretically possible 3ATs listed in 
Figure 7.  

Ascertaining a 3AT requires the correct manoeuver classification and SSM calculation. Building upon 
the mined trajectories, the process consists of seven steps, as shown in Figure 12, beginning with (1) 
taking a pair of trajectories  and (2) checking whether the road users belonging to the trajectories 
are visible in the video at the same time. If so, then (3) the corresponding manoeuvers  need to be 
obtained, including the manoeuver direction (e.g. turning left from B to C), at which time the directions 
depend on the location observed (e.g. a four-way intersection).  

f l v
S

t1 t2

(2)PET = t2 − t1

ti,  tj
mi,  mj

 www.ai.datafromsky.com/aerial4
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Figure 12. (Left) Determining accident type and (right) possible manoeuvres without turning around.



Next, (4) whether the combination of obtained manoeuvers matches a predefined 3AT  needs to be 
checked; for example, the manoeuver turning left from B to C and going straight from D to B could 
theoretically represent 3AT 211 (see Figure 7). After that, (5) the  assigned to the previously 
determined  needs to be calculated. For 3AT 211, for instance, the PET is suitable for assessing 
conflicts between the two road users (see Figure 7). Once done, (6) whether the  is in a 
predefined threshold needs to be determined in order to sort out irrelevant conflicts (e.g.  
according to the length of the GIDAS pre-crash-matrix (Schubert, Erbsmehl and Hannawald, 2013)). 
Last, once the threshold is met, (7) the corresponding meta variables and manually coded behavioural 
errors can be matched to the determined  using the common timestamp (see Figure 5) between 
manual coding and the video-recording. As a result, the risk of a crash can be assessed.  

Assessing the risk of a crash  
Once the identified traffic conflicts were categorised according to the 3AT classification (see Figure 7), 
we examined the risk of a crash, or crash risk, of each 3AT to ensure that the 3AT populations obtained 
were relevant for fusion with PD. Because traffic conflicts can lead to crashes but do not have to (see 
Figure 3), we wanted to assess whether the detected traffic conflicts had at least an inherent risk of 
leading to a crash. If the risk was significantly greater than zero, then the traffic conflicts were suitable 
for subsequent fusion. Thus, we modelled crash risk using generalised extreme value (GEV) 
distributions (Zheng and Sayed, 2020) based on corresponding 3AT SSM distributions.  

Zheng and Sayed (2020) have already predicted crash risk, , for traffic conflicts in longitudinal 
traffic equivalent to 3AT 601 (see Figure 7), in which they used the modified TTC to assess conflicts 
and model the corresponding GEV distributions. For validation, in this paper we determine the crash 
risk for each 3AT, , and predict the number of crashes, , likely to occur in a year. Having 
a predicted number of crashes per year allows a comparison with PD within the scope of validation. 

We applied the process from Coles (2013) and Zheng and Sayed (2020) to each of the observed 
locations (i.e. intersections without traffic signals) as follows: 

1. Extreme value determination: Determining extreme values by data blocking, in which each 
detected traffic conflict represents a block represented by the corresponding SSM distribution 
(see Figure 13), and the SSM value from the block is taken to represent the maximum critical 
situation (i.e. SSM minimum);  

2. GEV modelling: Estimating the corresponding GEV distribution  using 
maximum likelihood estimation,  particularly of the scale parameter σ, the location parameter 5

µ and the shape parameter ξ;  

3. Risk calculation: Making the corresponding SSM zero in the event of a crash, as shown in 
Equation 3;  

4. Extrapolation: Predicting the number of crashes for a year by extrapolating the location-
dependent observation time , as shown in Equation 4; and  

ATij

SSMij
ATij

SSMij
< 5s

ATij

RC

RC,3AT NC,3AT

G3AT(SSM )

(3)RC,3AT = G3AT(0) =  
exp −[1 + ξi(− μi

σi )]
− 1

ξi ,              ξ ≠ 0

exp[−exp( μi
σi )],                              ξ = 0

tl

(4)NC,3AT(T = 1 year) = RC,3AT * 60[min]
tl[min] *24[hours]*365[days]

 We used the function “fevd” from the R package extRemes (version 2.1).5
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5. Validation: Comparing the predicted with the corresponding PD.  

  

NC,3AT 
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Figure 13. Determination of extreme values dependent on the 3AT.



RESULTS 

Collected data  
Table 2 introduces the data collected by two drone pilots: Pilot A and Pilot B. We assigned each pilot to one 
intersection depending on their route of approach to the intersection; Pilot A observed the three-way intersection 
for 790 min (13.2 h) and Pilot B the four-way intersection for 855 min (14.3 h), both in similar weather 
conditions. Among the results, Pilot A marked 2.4 times more POIs at the three-way intersection (i.e. 1827) than 
Pilot B at the four-way intersection (i.e. 774). Pilot A also marked eight near crashes and 241 POIs associated 
with behavioural errors, whereas Pilot B observed no near crashes and associated only 10 POIs with behavioural 
errors. At the same time, Pilot B associated 8 of 11 behavioural errors with visual causes (e.g. obstacles 
obstructing the drivers’ view), whereas Pilot A recorded no such errors.  

Table 2.  
Overview of the data collected. 

Tharandter Straße / 
Frankenbergstraße

Dorfhainer Straße /  
Kohlenstraße

Drone pilot A B

Intersection type 3-way 4-way

Observation duration 1 June–31 August 2022

Number of days observed 11 12

Recording time (in minutes) 790 855

Average temperature (in median 
°C)

21 22

Number of points of interest 1827 774

Number of crashes 0 0

Number of near crashes 8 0

Number of vehicle–vehicle 
interactions

1154 523

Number of behavioural errors 241 11

Number of vehicles with 
behavioural errors

175 11

Number of causes in total 0 8

Number of visual causes 0 8

Number of technical causes 0 0

Number of environmental causes 0 0
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Figure 14 highlights the different behavioural errors observed by the drone pilots. Overall, Pilot A observed nine 
types of errors at the three-way intersection, among which priority errors (95×), road use errors (67×) and 
turning errors (51×) were the most frequent. Meanwhile, Pilot B observed only two types of behavioural errors: 
10 road use errors and one stationary traffic error. The aspect of “PassedPriority”, meaning when a road user 
voluntarily gives up the right of way to another road user, was not logged during the observation and introduced 
only after the observation had ended; as we found this aspect to be important during the observation. Moreover, 
neither pilot observed the behavioural errors “DriveByError” or “WrongBehaviourTowardsPedestrianError”.  
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Figure 14. Type of behavioural errors.

Figure 15. Detected conflict situations according to 3AT.



Determined conflict situations  
Figure 15 introduces the automatically detected conflict situations between two cars, categorised according to 
the 3AT classification shown in Figure 7. Overall, 185 conflicts were detected at the three-way intersection, 
which represented 15.9% of all POIs marked by Pilot A, versus 448 conflicts detected at the four-way 
intersection, which represented more than 85.7% of the POIs marked by Pilot B. Remarkably, only 3AT 601 
appeared in the three-way intersection, whereas that type and five additional 3ATs (i.e. 201, 211, 231, 303 and 
321) appeared in the four-way intersection. Furthermore, as Table 3 reveals, only one type of behavioural error, 
“DistanceError”, could be matched with the detected conflicts using the timestamp. An example of matching for 
DistanceError appears in Figure 16; although the white car with the red dot keeps a distance of 5.78 m while 
going 50 km/h, in Germany a distance of 15 m has to be maintained at that speed in urban areas (Autowelt, 
2022). By comparison, the black car in the middle maintains a distance of 13.32 m, which is closer to the 
prescribed 15 m. The other behavioural errors listed in Figure 14 could not be assigned. Table 3 also introduces 
the conflict-related SSM distributions based on the extreme values revealed by data blocking. For example, 3AT 
601, detected 178 times at the three-way intersection, had an extreme value distribution , with an 
average TTC of 1.53 s (median), a 25th percentile of 0.86 s and a 75th percentile of 2.25 s. To determine the 
extreme values, we removed SSM values less than 0.2 s if they did not lead to a crash, which was always the 
case. Therefore, the conflicts detected and the sample size, , of the respective distributions differed (see Table 
3). Beyond that, because the corresponding sample sizes for 3AT 601 (i.e. at the three-way intersection), 303 and 
601 were quite small for GEV modelling, the distributions determined are not especially meaningful.   

Table 3.  
Detected conflict situations at the observed locations. 

G601(T TC )

n

No. Frequency 3AT Behavioural 
error 

Cause SSM n 
(0.2 s > 
SSM < 
5.0 s)

SSM [s] (25th 
percentile | median | 

75th percentile) 

Tharandter Straße/ 
Frankenbergstraße 

(3-way)

1 178× 601 / / TTC 178 0.86 | 1.53 | 2.25

2 7× 601 Distance 
error

/ TTC 7 1.42 | 1.74 | 1.92

Dorfhainer Straße/ 
Kohlenstraße 

(4-way)

3 82× 201 / / TTC 27 0.86 | 1.08 | 1.60

4 13× 211 / / PET 13 1.07 | 1.50 | 1.80

5 74× 231 / / TTC 67 0.60 | 1.22 | 1.62

6 7× 303 / / PET 7 2.20 | 2.64 | 2.64

7 3× 321 / / PET 3 2.24 | 2.24 | 2.45

8 269× 601 / / TTC 263 1.32 | 1.72 | 2.12
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Modelled crash risk  
 Table 4 lists the results of the modelled crash risk compared with official PD for the observed locations. Overall, 
the predicted number of crashes per year was rounded to 16 for the three-way intersection and to one for the 
four-way intersection. For the three-way intersection, the 3ATs 302 and 201, which led to crashes between 2005 
and 2021, could not be predicted due to missing data (see Figure 15). As for the four-way intersection, the 
predicted results and official PD seem to coincide for 3AT 601; whereas 3AT 601 never led to a crash between 
2005 and 2021, the predicted number of crashes was 0.012 and thus close to 0. The graphical analysis in Figure 
17 (right) confirms that positive result, for the modelled distribution and empirically determined data coincide 
well. However, 3AT 211 occurred only once between 2005 and 2021 but was predicted to occur 1.3 times a year. 
At that rate, over 16 years, 3AT 211 would have occurred approximately 20 times, which is 20 times more than 
captured in the PD. Added to that, 3AT 601 also occurred only once between 2005 and 2021 at the three-way 
intersection but was predicted to occur 16 times a year, or 240 times more than in the PD across the 16-year 
period. Those results are confirmed in Figure 17 (left), which shows that the modelled and empirical 
distributions coincide poorly. In total, the predicted crash risks illustrate that the identified traffic conflicts 
according to the 3AT 601 for both intersections and the 3AT 211 have an inherent crash risk and seem suitable 
for subsequent fusion with PD.  
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Figure 16. Manually coded distance error of car with red dot at Tharandter Straße/Frankenbergstraße.



Table 4.  
Results of the modelled risk of a crash. 

DISCUSSION  

This paper reveals that the design of VO studies and the information to be collected during VOs should be 
planned to accommodate subsequent fusion with PD. By adopting the FUSE4Rep process model to VO using 
drones, we have demonstrated how to choose observation locations, derive sampling plans and collect relevant 
information, especially on behavioural errors. Along those lines, the sampling plan should be oriented towards 
an unobserved, superordinate population with overlap with the PD to be fused. The information to be collected 
should also coincide with information contained in the PD, information needed to describe test scenarios 
according to the 6LM and information derived from the adapted causality model of crashes. Due to space 
constraints, we have published only the information necessary for conducting drone-based VO in the ListDB 
Codebook. Even so, we have also shown how to mine trajectories efficiently, classify traffic conflicts according 

3AT Number of  
car–car  
crashes,  

2005–2021 

n µ σ ξ RC Predicted 
crashes 
per year 

Tharandter Straße / 
Frankenbergstraße  

(3-way)

601 1 185 1.363 0.788 −0.393 0.0237 15.74

302 1 Not detected in traffic observation

201 2 Not detected in traffic observation

Dorfhainer Straße/ 
Kohlenstraße 

(4-way)

601 0 263 1.491 0.564 −0.084 1.882e-05 0.012

211 1 13 1.284 0.557 −0.249 0.0021 1.268
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Figure 17. Histogram of TTC and GEV modelling results for 3AT 601. 



to the 3AT classification and how to match the traffic conflicts with behavioural errors. Last, we have 
demonstrated how to assess the inherent crash risk of the identified traffic conflicts using extreme value theory.  

The efficient, accurate interpretation of VO data and subsequent generation of test scenarios require combining 
human knowledge with automatic video analysis. While video analysis leveraging computer vision algorithms 
can help to mine road users’ trajectories and detect traffic conflicts, it cannot contextualise the detected conflicts 
due to relying only on the drone’s bird’s-eye view. Even so, the drone pilot can help to detect barely visible 
parking crashes or behavioural errors, including informal agreements with other road users about yielding the 
right of way; identify causes of behavioural errors such as visual obstacles or technical problems; and note any 
major traffic-impacting events (e.g. football games in a nearby stadium that are not visible in the video-
recording). Nevertheless, some of the information collected from pilots is highly subjective, especially when it 
concerns behavioural errors such as “DistanceError” or “SpeedError”. Another challenge is the real-time 
synchronisation of points of interest and information collected by pilots with the traffic conflicts detected in the 
video-recordings made by drones. Especially at busy intersections, delays of only one or two seconds in the 
synchronisation can result in incorrect assignments, e.g. one second delay corresponds already to 13.8m distance 
travelled at a permitted speed of 50 km/h.  

Categorizing traffic conflicts according to the 3AT classification leads to a good fit with PD according to the 
FUSE4Rep process model. At the same time, the approach detects only known constellations of traffic conflicts, 
whereas conflicts that do not fall into the 3AT classification cannot be sufficiently considered. Furthermore, the 
choice of the appropriate SSM determines the quality with which the conflict is described. For example, the TTC 
does not take acceleration behaviour into account.     

GEV modelling allows analysing the inherent risk of traffic conflicts found separately according to 3AT 
classification and independently of other simulation methods such as stochastic traffic simulations (Siebke et al., 
2023). However, the modelled GEV distributions heavily depend on outliers and thus accurately calculated SSM 
values. Evaluating the data of the calculated SSMs has revealed that, especially at the three-way intersection, 
low values often result (e.g. TTC < 0.2 s), which typically precipitate crashes. A more detailed video analysis of 
traffic conflicts that stand out due to low TTC values suggests that the reason may be poorly fitting bounding 
boxes and, in turn, wrongly calculated vehicle dimensions. Figure 18 illustrates that problem; whereas the 
following car with ID 204 is very close to the leading car in front, a crash is highly unlikely because the vehicles 
do not overlap in their dimensions, and, thus, the following car could drive past. However, if the object detector 
incorrectly determines the vehicle dimensions and positions, then the TTC will be miscalculated. Furthermore, 
GEV modelling should be refined to take the overall scene embedding the traffic conflicts into account. For 
example, traffic flow can significantly affect the overall safety and crash risk at intersections (Oh, Washington 
and Choi, 2004), which can consequently affect the distribution of extreme values. A next step is therefore to 
include corresponding covariates in GEV modelling (Zheng and Sayed, 2020). Last, quantitative measures, 
including the coefficient of determination R2 and the Akaike information criterion, to assess the quality of the 
GEV modelling, need to be introduced.  
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Figure 18. Traffic conflict detected with miscalculated TTC due to poorly fitting bounding boxes. 



Limitations  
In the data collected by the drone pilots, the unknown inter-rater reliability is a major limitation. Although both 
pilots received the same intensive training and supervision during observations, each pilot was assigned an 
observation site in which they specialise. Thus, the results of the pilots at the different survey locations were not 
compared with each other.  

The validation of GEV modelling results using PD was also limited in its informative value. On the one hand, 
the number of accidents with five relevant crashes between 2005 and 2021 was quite small for comparison. On 
the other, the prediction referred to future traffic events, whereas the accident data referred to past traffic events.  

For practitioners 
Independent of applying the FUSE4Rep process model, practitioners can use the proposed process for 
conducting VO studies to collect and analyse data for use in generating test scenarios (Nalic et al., 2020). As a 
result, practitioners can also transfer the information collected into corresponding OpenX formats (ASAM e.V., 
2022) such as OpenScenario and OpenDrive. Practitioners can also improve the survey process by conducting 
drone pilot training that is more technical and aligned with the Swedish Traffic Conflict Technique (Polders and 
Brijs, 2018). Also, the mapping of the POIs in the ListDB app should be synchronised electronically in real time 
with the drone recoding. Additionally, the observation locations could be divided into spatial zones so that for 
each POI, spatial information is also available for matching with the conflicts detected by the video analysis.  

For scientists  
Scientists can directly use the proposed application of the FUSE4Rep process model for VO for data to fuse with 
German PD and derive representative test scenarios. In that process, scientists should also improve the 
calculation of SSM values, especially TTC; because conflicts in which one car follows another car ideally are 
only one part of the conflict situations, in which the TTC has to be determined. Thus, the calculation of TTC 
should be more generalised to be able to take angular situations into account for assessment as well. According 
to Laureshyn, Svensson and Hydén (2010) and Tarko (2019), generalised TTC calculation should be used to 
allow a possible collision angle between two road users. In addition, new object detectors should be used to 
directly detect rotated bounding boxes (e.g. Yang et al., 2021) and thereby deliver more precise vehicle 
dimensions. Moreover, scientists should study how correcting factors of observation altitude (i.e. approx. 80 m 
above the ground) affects the determination of the position of objects (Kruber et al., 2020) and might increase 
the accuracy of the entire video analysis. Last, scientists should investigate the additional automatic detection of 
behavioural errors and improve GEV modelling by taking appropriate covariates (e.g. traffic flow) into account.  

CONCLUSION  

Strictly applying the FUSE4Rep process model in collecting and analysing VO using drones supports the 
generation of representative test scenarios by applying data fusion. In that process, not only VO analysis but also 
study planning (e.g. sample plan) and the information to be collected need to be aligned in advance with the PD 
to be fused later on. In data collection, drone pilots can set observed traffic conflicts into context and record 
behavioural errors of road users, which then can be linked to the traffic conflicts. After that, GEV modelling can 
help to assess the inherent crash risk of the traffic conflicts identified.  

Drone-based VOs for subsequent scenario generation are already publicly available as data sets about location-
specific trajectories. Such data sets seldom follow a comprehensible sampling plan, and only a few 
metavariables are used to describe them. As our results show, it makes sense to embed the drone-based VOs in a 
systematic in-depth survey, which we describe using the 122 variables of the ListDB Codebook. In addition, the 
consistent alignment of the traffic conflict analysis with PD and the German 3AT classification can help to 
ensure that test scenarios can be found quickly and that fusion can be performed. We anticipate that only with the 
subsequent application of the FUSE4Rep process model will it become possible to find representative test 
scenarios for the evaluation of ADSs in the future.   
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APPENDIX 
Table 5.  

Excerpt from the official ListDB Codebook (https://w3id.org/listdb/) for video-based traffic observations (VO). 

Category Variable Values Explanation Example

Time 
(Static)

TimeStamp YYYYMMDD_HHMMSS Start of VO 20221210_18512
0

RecordingTime [minutes] Integer Duration of 
VO 

25

Weekday Monday | Tuesday | Weekday | Thursday 
| Friday | Saturday | Sunday

/ Monday

PublicHoliday Yes | No | Unknown / Yes

Environment 
(Static)

Temperature [°C] Integer Outdoor 
temperature

15

RoadCondition Dry | Wet | Icy/Snow-covered | Slippery 
| Unknown

/ Dry

RoadSurfaceTemperatur
e [°C]

Integer / 9

Sunshine

No | Light | Strong | Not applicable | 
Unknown /

No

Rain Light

Fog Strong

Snow No

Wind Light

WindSpeed [km/h] Integer / 10

Light Day | Night | Not applicable / Day

Point of 
interest 

(POI) (Time-
based)

POI Crash | NearCrash | 
SpecialOperationVehicle | 

ObstacleOnRoad | VehicleVehicle | 
VehicleCycle | VehicleBike | VehiclePed 

| CycleCycle | CycleBike | CyclePed | 
BikePed | SingleObject | MultiObjects | 

TurnAround | Other 

Detected 
POIs 

describing 
events or 

interactions 
saved with 
timestamp 
HHMMSS

VehicleCycle, 
185230

BehaviouralError PassedPriority | RoadUseError | 
PriorityError | TurningError | 

SideBySideDrivingError | 
WrongBehaviourTowardsPedestrianErro

r | OvertakingError | DriveByError | 
DistanceError | SpeedError | 

StationaryTrafficError | OtherError

Detected 
wrong 

behaviour in 
relation to a 

prior 
detected POI 

Road user 
showing the 

wrong 
behaviour is 
also recorded

Vehicle, 
PriorityError

CauseError VisualCause | EnvironmentalCause | 
TechnicalCause

Detected 
cause of 
wrong 

behaviour in 
relation to a 
previously 

detected POI 

VisualCause

Special 
remarks 
(Static)

Remarks String Free text 
describing 

events 
affecting the 

traffic 
situation

Football game 
between 3 and 6 

p.m. in the nearby 
stadium (stadium 
not visible in the 

video) 
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